Structure et dynamique des ions moléculaires froids : processus de formation et de destruction
Auteur / Autrice : | Humberto da Silva Jr. |
Direction : | Olivier Dulieu, Maurice Raoult |
Type : | Thèse de doctorat |
Discipline(s) : | Physique quantique |
Date : | Soutenance le 10/07/2017 |
Etablissement(s) : | Université Paris-Saclay (ComUE) |
Ecole(s) doctorale(s) : | École doctorale Ondes et matière (Orsay, Essonne ; 2015-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire Aimé Cotton (Orsay, Essonne) |
établissement opérateur d'inscription : Université Paris-Sud (1970-2019) | |
Jury : | Président / Présidente : Danielle Dowek |
Examinateurs / Examinatrices : Olivier Dulieu, Maurice Raoult, Danielle Dowek, Andrea Simoni, Laurent Wiesenfeld, Franco Antonio Gianturco, Johannes Hecker Denschlag | |
Rapporteurs / Rapporteuses : Andrea Simoni, Laurent Wiesenfeld |
Mots clés
Résumé
Ce travail concerne les mécanismes de formation, de destruction et de relaxation interne des ions moléculaires formes au cours de collisions inélastiques ultra-froides. Ces collisions sont étudiées expérimentalement dans des pièges hybrides mêlant un piège d'atomes ultra-froids et un piège d’ions refroidis par laser. Nous avons effectué une analyse théorique systématique des collisions binaires, assistées par la lumière, impliquant plusieurs sortes de paires atome/ion. Leur interaction mutuelle est décrite par des calculs de chimie quantique basés sur l'utilisation de potentiels de cœur effectifs très précis. La formation d’ions moléculaires par 'association radiative est prédite efficace pour tous les systèmes étudiés, avec une section efficace deux à dix fois plus grande que le processus concurrent, le transfert de charge radiatif. Les constantes de vitesse partielles et totales sont aussi calculées et comparées aux valeurs expérimentales disponibles. Des résonances de forme sont attendues avec une largeur très faible, et pourraient être observées avec la meilleure résolution expérimentale atteinte aujourd'hui. Les distributions vibrationnelles ont aussi été calculées. Elles montrent que les ions moléculaires formés ne sont pas créés dans leur état vibrationnel fondamental. Nous avons ensuite montré que ces ions moléculaires pouvaient être photodissociés par les lasers utilisés dans l’expérience pour le refroidissement et le piégeage. Par ailleurs nous avons étudié la relaxation vibrationnelle des ions formés. Dans les échelles de temps des différentes expériences, nous avons montré que celle-ci ne résulte pas d'une relaxation radiative associée au moment dipolaire permanent de l'ion, mais plutôt à des collisions avec les atomes ultra-froids environnants. Nous avons ainsi étudié cette relaxation interne pour les ions H₂⁺ (resp. Rb₂⁺) lors d'une collision avec des atomes ultra-froids de He (resp. Rb). Ces deux cas sont importants pour des expériences en cours. Nous avons décrit le calcul du potentiel d'interaction nécessaire pour l'obtention de la matrice de couplage qui intervient dans la résolution deséquations couplées multi-voies. En particulier il a été montré, dans le cas He-H₂⁺, que les interactions spin-rotation, du fait de la structure doublet de l'ion, n'ont qu'une faible influence sur la somme des sections efficaces d'état à état (avec ou sans effet vibrationnel). Ces calculs peuvent être donc simplifiés en traitant l'ion à un électron actif comme étant dans un état de spin nul. Dans le cas Rb-Rb₂⁺, l'étude de la relaxation vibrationnelle de l'ion Rb₂⁺ suite à des collisions froides avec des atomes de Rb se heurte à des difficultés supplémentaires: (i) l'échange des atomes identiques conduisant à des collisions réactives qui induisent des pertes dans le piège. (ii) la forte densité d'états internes due à la lourde masse du système. (iii) les interactions inter-voies encore présentes à très longues distances du fait cette forte densité. Néanmoins, nos calculs montrent que la forte anisotropie observée dans les surfaces d'énergie potentielle conduit à la relaxation efficace de l'ion Rb₂⁺ par collision avec des atomes de Rb. Cette tendance pourrait être très générale pour les ions moléculaires triatomiques présentant une forte anisotropie à courte distances et qui sont couramment utilisés dans les pièges hybrides.