Étude du comportement de l’uranium et de l’iode dans le mélange de fluorures fondus LiF-ThF₄ à 650 °C
Auteur / Autrice : | Gabriela Durán-Klie |
Direction : | Sylvie Delpech |
Type : | Thèse de doctorat |
Discipline(s) : | Aval du cycle nucléaire, radioprotection et radiochimie |
Date : | Soutenance le 25/09/2017 |
Etablissement(s) : | Université Paris-Saclay (ComUE) |
Ecole(s) doctorale(s) : | École doctorale Particules, hadrons, énergie et noyau : instrumentation, imagerie, cosmos et simulation (Orsay, Essonne ; 2015-....) |
Partenaire(s) de recherche : | Laboratoire : Institut de physique nucléaire (Orsay, Essonne ; 1956-2019) |
établissement opérateur d'inscription : Université Paris-Sud (1970-2019) | |
Jury : | Président / Présidente : Sylvain Franger |
Examinateurs / Examinatrices : Sylvie Delpech, Sylvain Franger, David Lambertin, Yolanda Castrillejo, Daniel Heuer | |
Rapporteurs / Rapporteuses : David Lambertin, Yolanda Castrillejo |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
Le Réacteur Nucléaire à sel fondu à spectre rapide (Molten Salt Fast Reactor, MSFR) est un concept innovant de quatrième génération développé par le CNRS depuis 2004 et actuellement étudié dans le cadre du projet européen SAMOFAR de H2020. Le MSFR fonctionne avec un combustible nucléaire liquide constitué d’un mélange de sels fluorures LiF-ThF₄-(UF₄/UF₃) (77,5-20-2,5) mol% fondus à haute température (700-900°C). Ce réacteur est particulièrement intéressant pour le cycle de combustible du thorium (²³²Th-²³³U). Ce concept propose un retraitement intégré du combustible nucléaire basé sur des méthodes pyrochimiques afin d’extraire la matière fissile et de séparer les actinides des produits de fission.Un schéma de traitement du sel combustible, proposé lors d’un précédent projet européen (EVOL, FP7), est basé sur les propriétés redox et acido-basiques des éléments produits par les réactions de fission et de capture ayant lieu dans le cœur du réacteur. La base d’évaluation de ce schéma a été dans un premier temps thermodynamique. Une validation expérimentale est actuellement en cours qui consiste à étudier le comportement chimique et électrochimique du sel fondu et des éléments qui y sont solubilisés. Les études précédentes sur les réacteurs sels fondus ne peuvent être utilisées que partiellement pour ce concept car la composition du sel du MSFR définie par le projet européen EVOL est différente en nature et composition des sels proposés jusqu’à présent pour ce type de réacteurs. Or, les coefficients de diffusion et d’activité dépendent des propriétés physico-chimiques du sel fondu (en particulier de la solvatation) et nous avons, lors d’études précédentes, montré que les propriétés de solvatation des sels fondus dépendent fortement de leur nature et de leur composition.Les objectifs de ce travail de thèse sont l’étude du mélange fondu LiF-ThF₄ et du comportement électrochimique de l’uranium et de l’iode dans ce mélange.L’étude électrochimique du comportement de l’uranium a montré la stabilité de deux espèces solubles (UF₄ et UF₃) de cet élément dans le milieu fondu et la possibilité de le réduire à l’état métallique. Ce point est d’importance car la co-existence de ces deux composés permettra de contrôler le potentiel du sel combustible dans le cœur du réacteur et de limiter les réactions de corrosion avec les matériaux de structure. Les coefficients d’activité de U(IV) et de U(III) ont été déterminés. Les valeurs obtenues montrent que la solvatation de l’uranium au degré d’oxydation (IV) par les ions fluorure est beaucoup plus importante que celle de l’uranium au degré (III), ce qui est en accord avec des observations ultérieures dans d’autres sels fluorures. Notre choix pour l’étude des produits de fission dans le sel combustible s’est porté sur l’iode. Dans le cœur du réacteur, la forme stable de l’iode est la forme halogénure soluble I- et dans le schéma général de traitement du sel combustible, il est prévu d’extraire l’iode par une étape de fluoration qui permet de produire le gaz I₂. Cette étude a montré la contribution d’une réaction chimique à l’oxydation des ions iodures en iode gazeux. Cette réaction chimique d’oxydo-réduction correspond à l’oxydation des ions iodures par l’oxygène. Cette réaction n’est expliquée que par l’existence d’un oxyfluorure de thorium soluble ThOF₂. Une efficacité d’extraction de I₂ (g) supérieure à 95 % a été obtenue par électrolyse à potentiel contrôlé. Ces électrolyses, qui simulent la fluoration, permettent de valider l’étape d’extraction de l’iode dans le schéma de traitement.Ce travail de recherche a permis d’acquérir une meilleure connaissance de la stabilité du sel et du comportement chimique et électrochimique de différents composés (U et I) dans le sel.