Compact modeling and circuit design based on spin injection - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2017

Compact modeling and circuit design based on spin injection

Modélisation compacte et conception de circuit à base d'injection de spin

Résumé

The CMOS technology has tremendously affected the development of the semi-conductor industry. However, as the technology node is scaled down, the CMOS technology faces significant challenges set by the leakage power and the short channel effects. To cope with this problem, researchers pay their attention to the spintronics in recent years, considering its possibilities to allow smaller size fabrication and lower power operations. The magnetic tunnel junction (MTJ) is one of the most important spintronic devices which can store binary data based on Tunnel MagnetoResistance (TMR) effect. Except for the non-volatile memory, MTJ can be also used to combine with or replace the CMOS circuits to implement a hybrid circuit, for the potential to achieve low power consumption and high speed performance. However, the problem of frequent spin-charge conversion in a hybrid circuit may cause large power consumption, which diminishes the advantage of the hybrid circuits. Therefore, the ASL concept which uses a pure spin current to transport the information is proposed for fewer charge-spin conversions, thus for less power consumption. The design of ASL device-based circuits leads to numerous challenges related to the heterogeneity they introduce and the large design space to explore. Hence, this thesis focus on filling the gap between application requirements at the system level and the device fabrication at the device level. In device level, we developed a compact model integrating the STT, the TMR, the spin injection/accumulation effects, the channel breakdown current and the spin diffusion delay. Validated by comparing with experimental results, this model allows exploring fabrication-related device parameters such as channel lengths and MTJ sizes and help designers to prevent from device damages. Moreover, programmed with Verilog-A on Cadence and divided into several blocks: injector, detector, channel and contact devices, this model allows the independent design and cross-layer optimization of ASL-based circuits, that eases the design of hierarchical, complex circuits. Furthermore, the spin injection/accumulation expressions for the used ASL device are derived, enabling to discuss the experimental phenomena of the ASL device. In circuit level, we developed a circuit/system design methodology, taking into account the channel distribution, the gate interconnection and the different injection current ratios caused by the spin diffusion. With circuit/system specifications and constraints, the boolean functions of a circuit are synthesized based on the developed synthesis method and fabrication-level parameters: channel lengths, MTJ sizes are specified. Based on this developed methodology, basic combinational circuits that form a circuit library are designed and evaluated by using the developed compact model. In system level, a DCT circuit, a convolution circuit and an Intel i7 system are evaluated exploring the interconnection issues: interconnection distribution between gates and inserted buffer count. With theoretical parameters, results show that ASL-based circuit/system can outperform CMOS-based circuit/system. Moreover, the pipelining schema of the ASL-based circuit is discussed with MTJ as latches inserted between stages. The reconfigurability caused by the injection current polarities/values and the control terminal states of ASL-based circuits are also discussed with the reconfigurable exploration of basic logic circuits.
La technologie CMOS a contribué au développement de l'industrie des semi-conducteurs. Cependant, au fur et à mesure que le noeud technologique est réduit, la technologie CMOS fait face à des défis importants liés à la dissipation dûe aux courants de fuite et aux effets du canal court. Pour résoudre ce problème, les chercheurs se sont intéressés à la spintronique ces dernières années, compte tenu de la possibilité de fabriquer des dispositifs de taille réduite et d'opérations de faible puissance. La jonction tunnel magnétique (MTJ) est l'un des dispositifs spintroniques les plus importants qui peut stocker des données binaires grâce à la Magnétorésistance à effet tunnel (TMR). En dehors des applications de mémoire non volatile, la MTJ peut également être utilisée pour combiner ou remplacer les circuits CMOS pour implémenter un circuit hybride, de façon à combiner une faible consommation d'énergie et des performances à grande vitesse. Cependant, le problème de la conversion fréquente de charge en spin dans un circuit hybride peut entraîner une importante consommation d'énergie, ce qui obère l'intérêt pour des circuits hybrides. Par conséquent, le concept ASL qui repose sur un pur courant de spin comme support de l'information est proposé pour limiter les conversions entre charge et spin, donc pour réduire la consommation d'énergie. La conception de circuits à base de dispositif ASL entraîne de nombreux défis liés à l'hétérogénéité qu'ils introduisent et à l'espace de conception étendu à explorer. Par conséquent, cette thèse se concentre sur l'écart entre les exigences d'application au niveau du système et la fabrication des nanodispositifs. Au niveau du dispositif, nous avons développé un modèle compact intégrant le STT, la TMR, les effets d'injection/accumulation de spin, le courant de breakdown des canaux et le délai de diffusion de spin. Validé par comparaison avec les résultats expérimentaux, ce modèle permet d'explorer les paramètres du dispositif liés à la fabrication, tels que les longueurs de canaux et les tailles de MTJ, et aide les concepteurs à éviter leur destruction. De plus, ce modèle, décrit avec Verilog-A sur Cadence et divisé en plusieurs blocs : injecteur, détecteur, canal et contact, permet une conception indépendante et une optimisation des circuits ASL qui facilitent la conception de circuits hiérarchiques et complexes. En outre, les expressions permettant le calcul de l'injection/accumulation de spin pour le dispositif ASL utilisé sont dérivées. Elles permettent de discuter des phénomènes expérimentaux observés sur les dispositifs ASL. Au niveau circuit, nous avons développé une méthodologie de conception de circuit/système, en tenant compte de la distribution des canaux, de l'interconnexion des portes et des différents rapports de courant d'injection provoqués par la diffusion de spin. Avec les spécifications et les contraintes du circuit/système, les fonctions booléennes du circuit sont synthétisées en fonction de la méthode de synthèse développée et des paramètres de niveau de fabrication : longueur des canaux, et tailles MTJ sont spécifiées. Basé sur cette méthodologie développée, les circuits combinatoires de base qui forment une bibliothèque de circuits sont conçus et évalués en utilisant le modèle compact développé. Au niveau du système, un circuit DCT, un circuit de convolution et un système Intel i7 sont évalués en explorant les problèmes d'interconnexion : la répartition de l'interconnexion entre les portes et le nombre de tampons inséré. Avec des paramètres théoriques, les résultats montrent que le circuit/système ASL peut surpasser le circuit/système basé sur CMOS. De plus, le pipeline du circuit basé sur ASL est discuté avec MTJ comme tampons insérés entre les étapes. La reconfigurabilité provoquée par les polarités/valeurs du courant d'injection et les états des terminaux de control des circuits ASL sont également discutés avec l'exploration reconfigurable des circuits logiques de base.
Fichier principal
Vignette du fichier
72810_AN_2017_archivage.pdf (6.42 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-01720258 , version 1 (01-03-2018)

Identifiants

  • HAL Id : tel-01720258 , version 1

Citer

Qi An. Compact modeling and circuit design based on spin injection. Electronics. Université Paris Saclay (COmUE), 2017. English. ⟨NNT : 2017SACLS240⟩. ⟨tel-01720258⟩
204 Consultations
26 Téléchargements

Partager

Gmail Facebook X LinkedIn More