Thèse soutenue

Modélisation de mouvement de foules avec contraintes variées

FR  |  
EN
Auteur / Autrice : Fatima Al Reda
Direction : Bertrand Maury
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées
Date : Soutenance le 06/09/2017
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale de mathématiques Hadamard (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de mathématiques d'Orsay (1998-....)
établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Jury : Président / Présidente : Quentin Mérigot
Examinateurs / Examinatrices : Bertrand Maury, Quentin Mérigot, Guillaume Carlier, Pierre Degond, Adrien Blanchet, Cécile Appert-Rolland
Rapporteur / Rapporteuse : Guillaume Carlier, Pierre Degond

Résumé

FR  |  
EN

Dans cette thèse, nous nous intéressons à la modélisation de mouvements de foules. Nous proposons un modèle microscopique basé sur la théorie des jeux. Chaque individu a une certaine vitesse souhaitée, celle qu'il adopterait en l'absence des autres. Une personne est influencée par certains de ses voisins, pratiquement ceux qu'elle voit devant elle. Une vitesse réelle est considérée comme possible si elle réalise un équilibre de Nash instantané: chaque individu fait son mieux par rapport à un objectif personnel (vitesse souhaitée), en tenant compte du comportement des voisins qui l'influencent. Nous abordons des questions relatives à la modélisation ainsi que les aspects théoriques du problème dans diverses situations, en particulier dans le cas où chaque individu est influencé par tous les autres, et le cas où les relations d'influence entre les individus présentent une structure hiérarchique. Un schéma numérique est développé pour résoudre le problème dans le second cas (modèle hiérarchique) et des simulations numériques sont proposées pour illustrer le comportement du modèle. Les résultats numériques sont confrontés avec des expériences réelles de mouvements de foules pour montrer la capacité du modèle à reproduire certains effets.Nous proposons une version macroscopique du modèle hiérarchique en utilisant les mêmes principes de modélisation au niveau macroscopique, et nous présentons une étude préliminaire des difficultés posées par cette approche.La dernière problématique qu'on aborde dans cette thèse est liée aux cadres flot gradient dans les espaces de Wasserstein aux niveaux continu et discret. Il est connu que l'équation de Fokker-Planck peut s'interpréter comme un flot gradient pour la distance de Wasserstein continue. Nous établissons un lien entre une discrétisation spatiale du type Volume Finis pour l'équation de Fokker-Planck sur une tesselation de Voronoï et les flots gradient sur le réseau sous-jacent, pour une distance de type Wasserstein récemment introduite sur l'espace de mesures portées par les sommets d'un réseaux.