Thèse soutenue

Micro-actionneurs numériques en silicium pour la réalisation d'un micro-convoyeur

FR  |  
EN
Auteur / Autrice : Zhichao Shi
Direction : Emile Martincic
Type : Thèse de doctorat
Discipline(s) : Electronique et Optoélectronique, Nano- et Microtechnologies
Date : Soutenance le 11/07/2017
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Electrical, optical, bio : physics and engineering (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Centre de nanosciences et de nanotechnologies (Palaiseau, Essonne ; 2016-....)
établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Jury : Président / Présidente : Frédéric Lamarque
Examinateurs / Examinatrices : Emile Martincic, Frédéric Lamarque, Nora Dempsey, Yassine Haddab, Elie Lefeuvre, Philippe Lutz, Denis Aubry
Rapporteur / Rapporteuse : Nora Dempsey, Yassine Haddab

Résumé

FR  |  
EN

Les travaux de cette thèse portent sur le développement (modélisation, conception, réalisation et tests) d’une surface intelligente (smart surface) composée d’un réseau d'actionneurs numériques MEMS, capables de mouvoir des charges posées dessus. Pour la réalisation de ces smart-surfaces, deux voies ont été explorées : un actionnement par voie électromagnétique, constituée d’aimants fixes et mobiles, et un actionnement utilisant des éléments bistables couplés à des alliages à mémoire de forme. Dans le premier cas, la simulation de l’interaction magnétique entre un micro-actionneur et le champ créé par des pistes conductrices placées à proximité a été réalisée. Un réseau de 5x5 micro-actionneurs électromagnétiques quadristables a été ensuite conçu, réalisé et caractérisé. Ce démonstrateur est fonctionnel en convoyage d’objets légers en translation et en rotation. Dans le second cas, la conception et la réalisation d’un actionneur MEMS élémentaire ont été menées : des modèles analytiques ont été confrontés aux résultats obtenus par éléments finis, et enfin comparés aux résultats expérimentaux. Ces travaux ciblent la problématique de la commande des systèmes mécatroniques, à actionneurs multiples, aux échelles méso ou microscopique. La connectique associée est un problème récurrent dans les systèmes fortement miniaturisés, les structures présentées ici présentent un fort potentiel de réduction des connexions filaires, voire leur élimination complète.