Thèse soutenue

Cartographie topographique et radiologique 3D en temps réel : acquisition, traitement, fusion des données et gestion des incertitudes

FR  |  
EN
Auteur / Autrice : Félix Hautot
Direction : Charles-Olivier Bacri
Type : Thèse de doctorat
Discipline(s) : Aval du cycle nucléaire, radioprotection et radiochimie
Date : Soutenance le 16/06/2017
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Particules, hadrons, énergie et noyau : instrumentation, imagerie, cosmos et simulation (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Centre de sciences nucléaires et de sciences de la matière (Orsay, Essonne ; 1998-2019)
établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Entreprise : Areva
Jury : Président / Présidente : Pierre Désesquelles
Examinateurs / Examinatrices : Charles-Olivier Bacri, Pierre Désesquelles, Éric Liatard, Abdelmjid Nourreddine, Vincent Lafage, Roger Abou-Khalil
Rapporteurs / Rapporteuses : Éric Liatard, Abdelmjid Nourreddine

Résumé

FR  |  
EN

Dans le cadre des activités de maintenance, de décontamination et de démantèlement d’installations nucléaires, il est nécessaire d’effectuer un état des lieux précis des structures potentiellement contaminées ou activées, préalablement à toute intervention. Pour des raisons économiques, cet état des lieux doit être le plus souvent réalisé dans un temps court. Par ailleurs, il est généralement effectué par un opérateur, dont le temps d’exposition aux rayonnements doit être minimisé. Une des difficultés récurrentes réside dans l’éventuelle obsolescence ou de l’inexistence des plans, et dans le cas d’investigations en intérieur, de la perte de signaux GPS, et de la difficulté d’employer des systèmes de localisations externes et pré-calibrés. En effet, l’état des lieux est obtenu en couplant une cartographie de l’environnement avec des mesures nucléaires destinées à évaluer le niveau de radiations dans les lieux étudiés. Dans ce cadre, il est nécessaire de disposer d’un instrument portatif permettant de délivrer une cartographie radiologique et topographique la plus exhaustive possible des locaux afin d’établir des scénarii d’intervention. Afin de minimiser le temps d’exposition de l’opérateur, il est essentiel que les données acquises soient exploitables en temps réel. Ce type d’instrument doit permettre de procéder à des interventions complexes et doit fournir les meilleures prévisions dosimétriques afin d’optimiser les temps d’intervention lors du démantèlement ainsi que la gestion des éventuels déchets. À ces fins, Areva STMI a développé un système autonome de positionnement et de calcul de déplacement de sondes de mesures nucléaires en temps-réel basé sur les techniques de SLAM (Simultaneous Localization And Mapping). Ces développements ont conduit au dépôt d’un brevet. Ce travail de thèse a consisté à poursuive cette étude, et en particulier à décomposer l’ensemble des sous-systèmes, à poursuivre les développements inhérents à la fusion de données topographiques et radiologiques, à proposer des moyens d’optimisation, et à poser les bases d’une technique d’analyse, en temps réel, des incertitudes associées. Les méthodes SLAM utilisent l’odométrie visuelle qui peut reposer sur la capture d’images à l’aide de caméras RGB-D (caméras de type Microsoft Kinect®). Le processus d’acquisition délivre une carte tridimensionnelle contenant la position et l’orientation en 3D des appareils de mesure ainsi que les mesures elles-mêmes (débit de dose et spectrométrie gamma CZT) sans implication d’infrastructure préexistante. Par ailleurs, des méthodes de détections de sources basées sur les techniques d’interpolation spatiale et de rétroprojection de signal en « proche temps-réel » ont été développées. Ainsi, il est possible d’évaluer la position des sources radioactives dans l’environnement acquis. Il est ainsi possible de calculer rapidement des cartes de son état radiologique sans délai après l’acquisition. La dernière partie de ce travail a consisté à poser les bases d’une méthode originale pour l’estimation, en proche temps réel, de la précision des résultats issus de la chaîne d’acquisition et de traitement. Cette première approche nous a permis de formuler l’évaluation et la propagation des incertitudes tout au long de cette chaîne d’acquisition en temps réel, afin d’évaluer les méthodes que nous avons employées en termes de précision et de fiabilité de chaque acquisition réalisée. Enfin, une phase de benchmark permet d’estimer les résultats par rapport à des méthodes de référence.