Etude de l'homéostasie de taille chez les cellules animales
Auteur / Autrice : | Clotilde Cadart |
Direction : | Matthieu Piel |
Type : | Thèse de doctorat |
Discipline(s) : | Sciences de la vie et de la santé |
Date : | Soutenance le 03/05/2017 |
Etablissement(s) : | Université Paris-Saclay (ComUE) |
Ecole(s) doctorale(s) : | École doctorale Structure et dynamique des systèmes vivants (Gif-sur-Yvette, Essonne ; 2015-....) |
Partenaire(s) de recherche : | Laboratoire : Biologie cellulaire et cancer (Paris ; 1995-....) |
établissement opérateur d'inscription : Université Paris-Sud (1970-2019) | |
Jury : | Président / Présidente : Bernard Mignotte |
Examinateurs / Examinatrices : Matthieu Piel, Bernard Mignotte, Silvia Santos, Damien Coudreuse, Lydia Robert, Marco Cosentino Lagomarsino, Ariel Lindner | |
Rapporteur / Rapporteuse : Silvia Santos, Damien Coudreuse |
Mots clés
Résumé
Le mécanisme d’homéostasie de taille chez les cellules animales est très peu compris actuellement. Cette question est pourtant d’un intérêt majeur car le maintien de l’homéostasie de taille dans une population de cellules prolifératives doit se faire par une coordination entre la croissance et la division. Chez la levure S. pombe, il a ainsi été montré que la taille est une information cruciale pour déclencher l’entrée en mitose (Fantes, 1977). Chez plusieurs bactéries et les cellules filles de la levure S. cerevisiae au contraire, de récentes études ont au contraire montré que l’homéostasie de taille était le résultat d’une addition constante de volume, indépendamment de la taille initiale des cellules (Campos et al., 2014; Soifer et al., 2016; Taheri-Araghi et al., 2015). Ce mécanisme est appelé « adder » et génère une régression des tailles à la moyenne, génération après génération. Ces résultats ont été possibles grâce au développement de techniques permettant la mesure dynamique du volume à l’échelle de la cellule unique et sur plusieurs générations. Une telle mesure est cependant très difficile chez les cellules de mammifère dont le volume fluctue constamment et qui cyclent sur des temps plus longs (environ 20 heures). Pour cette raison, la plupart des approches proposées sont indirectes (Kafri et al., 2013; Sung et al., 2013; Tzur et al., 2009) ou reposent sur une mesure de la masse plutôt que du volume (Mir et al. 2014; Son et al., 2012). Ensemble, ces études ont montré que les cellules de mammifère croissaient de manière exponentielle. Elles ont aussi remis en cause le modèle traditionnel qui proposait que l’homéostasie de taille reposait sur l’adaptation de la durée du cycle et mis en avant un rôle de la régulation de la vitesse de croissance. Cependant, aucun modèle n’a réellement été proposé ou démontré. La nature et l’existence même d’un mécanisme maintenant l’homéostasie de taille des cellules de mammifère est en fait discutée (Lloyd, 2013).Pour caractériser l’homéostasie de taille des cellules de mammifères, nous avons développé une technique permettant pour la première fois la mesure du volume de ces cellules sur des cycles complets (Cadart et al., 2017; Zlotek-Zlotkiewicz et al. 2015). Nous montrons que plusieurs types cellulaires (HT29, MDCK et HeLa) se comportent d’une manière similaire à celle d’un « adder ». Pour tester davantage cette observation, nous induisons artificiellement des divisions asymétriques en confinant les cellules dans des micro-canaux. Nous observons que les asymétries de tailles sont réduites mais pas complètement corrigées au cours du cycle suivant, à la manière d’un « adder ». Pour comprendre comment la croissance et la progression dans le cycle sont coordonnées et génère cet « adder », nous combinons notre méthode de mesure de volume avec un suivi de la progression dans les différentes phases du cycle. Nous montrons que la durée de la phase G1 est inversement corrélée au volume initial des cellules. Cependant, cette corrélation semble contrainte par une durée minimale de G1 mise en évidence lors de l’étude de cellules artificiellement poussées à atteindre de grandes tailles. Néanmoins, même dans cette condition où la modulation de la durée du cycle est perdue, l’observation du « adder » est maintenue. Ceci suggère un rôle complémentaire de la régulation de la vitesse de croissance des cellules. Nous proposons donc une méthode pour estimer théoriquement la contribution relative de l’adaptation de la vitesse de croissance et de la durée du cycle dans le contrôle de la taille. Nous utilisons cette méthode pour proposer un cadre général où comparer le processus homéostatique des bactéries et de nos cellules. En conclusion, notre travail apporte pour la première fois la démonstration que les cellules de mammifères maintiennent l’homéostasie grâce à un mécanisme similaire au « adder ». Ce mécanisme semble impliquer à la fois une modulation de la durée du cycle et du taux de croissance.