Thèse soutenue

Cavités à fente à cristaux photoniques pour l'intégration hybride sur silicium

FR  |  
EN
Auteur / Autrice : Thi Hong Cam Hoang
Direction : Éric Cassan
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 29/03/2017
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Electrical, optical, bio : physics and engineering (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Centre de nanosciences et de nanotechnologies (Palaiseau, Essonne ; 2016-....)
établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Jury : Président / Présidente : Abderrahim Ramdane
Examinateurs / Examinatrices : Éric Cassan, Abderrahim Ramdane, Emmanuel Centeno, Boris Gralak, Cécile Jamois
Rapporteurs / Rapporteuses : Emmanuel Centeno, Boris Gralak

Résumé

FR  |  
EN

Cette thèse est une contribution à la modélisation et à l'étude expérimentale de cavités à cristaux photoniques à fente développées en vue d’un intégration hybride de matériaux actifs sur silicium. Parmi les travaux de conception, nous avons d'abord utilisé la méthodes des ondes planes et la méthode des différences finies (FDTD) pour concevoir une série de cavités SOI à hétérostructures, mécaniquement robustes, infiltrées par des liquides d’indices (n environ 1,5), présentant des longueurs d'onde de résonance dans la gamme des télécommunications (1,3 μm - 1,6 μm), des facteurs de qualité de plusieurs dizaines de milliers, et des volumes modaux proches de 0,03 (lambda/n)3. Nous avons ensuite étudié analytiquement et numériquement le couplage entre une cavité à cristaux photoniques à fente et un guide d'onde à fente par la théorie des modes couplés, complétée par des simulations FDTD, qui ont permis de confirmer la possibilité d'exciter efficacement les modes de fente des cavités à partir d'un guide externe. Enfin, nous avons étudié numériquement et semi-analytiquement des géométries de molécules photoniques constituées de deux cavités à cristaux photoniques à fentes couplées, dont l’écart fréquentiel entre les supermodes a pu être ajusté en amplitude et en signe. Nous avons utilisé une méthode perturbative (« Tight binding ») pour estimer les distributions spatiales des modes des molécules photoniques et prédire leurs fréquences dans plusieurs configurations de cavités à cristaux photoniques à fentes couplées.Ce travail exploratoire a été complété par une partie expérimentale qui a porté sur l'étude d'une famille de cavités de hétérostructure à cristaux photoniques à fente. Les cavités à cœur creux fabriquées ont montré des facteurs de qualité (Q) de plusieurs dizaines de milliers, associés à des volumes modaux de l’ordre de V=0,03 (λ/n)^3 après infiltration de la fente et des trous des structures par des liquides d'indice de réfraction proches de 1,46. Des facteurs Q/V supérieurs à 600 000 et atteignant 1 000 000 dans le meilleur des cas (vers lambda=1,3µm) ont ainsi été observés. Cette phase expérimentale préliminaire a donné ensuite lieu à deux types de développements.Tout d'abord, les propriétés des cavités à cristaux photoniques à fentes ont été étudiées pour des applications en détection d'indice en volume, et testées en utilisant différents liquides d'indice de réfraction compris entre 1,345 à 1,545. Les résonateurs étudiés ont présenté des sensibilités de ~ 235 nm / RIU et des facteur de mérite de détection d'indice de l’ordre de 3700, à l’état de l’art pour des résonateurs silicium intégrés à cœur creux.Dans une autre direction, le potentiel des résonateurs diélectriques à fente a été exploré en vue d’une intégration des matériaux actifs sur silicium. Un polymère dopé aux nanotubes de carbone semiconducteurs a été déposé comme matériau de couverture en vue d’étudier le renforcement de la photoluminescence (PL) des nano-émetteurs sous pompage optique vertical à lambda=740nm. Les expériences conduites ont permis de corréler le renforcement de la PL des nanotubes avec les modes de résonance des cavités et de démontrer le couplage partiel de cette PL vers des guides SOI longs de plusieurs millimètres (collection par la tranche vers lambda=1.3µm), apportant une preuve de principe d’une possible intégration des nanotubes émetteurs en photonique sur silicium.