Thèse soutenue

Vers une utilisation synaptique de composants mémoires innovants pour l’électronique neuro-inspirée

FR  |  
EN
Auteur / Autrice : Adrien F. Vincent
Direction : Sylvie Retailleau
Type : Thèse de doctorat
Discipline(s) : Electronique et optoélectronique, nano- et microtechnologies
Date : Soutenance le 03/02/2017
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Electrical, optical, bio : physics and engineering (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Centre de nanosciences et de nanotechnologies (Palaiseau, Essonne ; 2016-....)
établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Jury : Président / Présidente : Ian O'Connor
Examinateurs / Examinatrices : Sylvie Retailleau, Ian O'Connor, Jean-Michel Portal, Damien Querlioz, Guillaume Prenat, Sylvain Saïghi
Rapporteur / Rapporteuse : Ian O'Connor, Jean-Michel Portal

Résumé

FR  |  
EN

Les réseaux de neurones artificiels, dont le concept s'inspire du fonctionnement des cerveaux biologiques et de leurs capacités d'apprentissage, sont une approche prometteuse pour répondre aux nouveaux usages informatiques dits « cognitifs », tels que la reconnaissance d'images ou l'interaction en langage naturel. Néanmoins, leur mise en œuvre par des ordinateurs conventionnels est peu efficace. Une solution à ce problème est le développement de puces d'accélération matérielle spécialisées qui comportent :- des neurones, unités de traitement de l'information, pour lesquelles des circuits électroniques efficaces existent ;- des synapses, reliant les neurones mais aussi support matériel de l'apprentissage, par le biais de la modulation de leur conductance électrique (qualifiée de « plasticité synaptique »). Réaliser des synapses artificielles intégrables densément et capables d'apprendre in situ reste aujourd'hui un défi majeur.Ces travaux de thèse portent sur l'utilisation synaptique de nanocomposants mémoires innovants, dont certains comportements plastiques riches et intrinsèques sont analogues aux fonctionnalités que nous recherchons.Nous nous intéressons tout d'abord aux jonctions tunnel magnétiques à transfert de spin, développées dans l'industrie pour concevoir de nouvelles mémoires informatiques non volatiles. Nous montrons qu'il est aussi possible d'en faire des synapses artificielles binaires. Après la modélisation analytique de leur comportement naturellement stochastique, nous présentons comment exploiter ce dernier pour faciliter la mise en œuvre in situ d'une règle d'apprentissage probabiliste. À l'aide d'outils de simulation développés au laboratoire, nous étudions l'influence du régime de programmation sur la robustesse d'un système à la variabilité de telles synapses et sur leur consommation énergétique.Nous nous tournons ensuite vers des cellules électrochimiques métalliques Ag2S, d'autres nanocomposants mémoires innovants fabriqués et étudiés par des collaborateurs de l'Université de Lille I, qui y ont déjà observé plusieurs comportements plastiques. Nous avons découvert une plasticité supplémentaire, proche d'un comportement observé en neurosciences. Grâce à un modèle analytique simple permettant de comprendre les relations entre les différentes plasticités, nous montrons en simulation une preuve de concept d'apprentissage non supervisé qui repose sur l'interaction de ces multiples comportements.Pour finir, nous soulevons des pistes de réflexion sur les défis posés par les circuits nécessaires au bon fonctionnement d'un système utilisant comme synapses artificielles les nanocomposants étudiés, notamment lors de la lecture ou de l'écriture de ces derniers.Les résultats de cette thèse ouvrent la voie à la conception de systèmes neuro-inspirés capables d'apprendre en s'appuyant sur la richesse de comportements plastiques offerte par les nanocomposants mémoires innovants.