Thèse soutenue

Analyse et influence des paramètres d’affaires sur la qualité d’expérience des services Over-The-Top

FR  |  
EN
Auteur / Autrice : Diego Rivera Villagra
Direction : Ana Cavalli
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 28/02/2017
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences et technologies de l'information et de la communication (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Télécom SudParis (France) - Département Réseaux et Services Multimédia Mobiles / RS2M
établissement opérateur d'inscription : Institut national des télécommunications (Evry ; 1979-2009)
Jury : Président / Présidente : Frédéric Cuppens
Examinateurs / Examinatrices : Ana Cavalli, Abdelhamid Mellouk, Natalia Kushik, Fatiha Zaïdi
Rapporteurs / Rapporteuses : Sébastien Tixeuil, Patrick Sénac

Résumé

FR  |  
EN

A l'époque où l'Internet est devenu la plateforme par défaut pour offrir de la valeur ajoutée, des nouveaux fournisseurs de services multimédia ont saisi cette opportunité en définissant les services Over-The-Top (OTT). Cependant, Internet n'étant pas un réseau de distribution fiable, il nécessaire de garantir de haut niveau de Qualité d'Expérience (QoE), ainsi que les revenues des Fournisseurs de Services d'Internet (ISP) et des OTTs.Le travail présenté dans ce document va au-delà de l'état de l'art, en proposant une solution qui prend en compte cet objectif. Les principaux apports qui y sont présentés peuvent être synthétisées en quatre contributions.En premier lieu, l'inclusion des paramètres liés aux modèles d'affaires dans l'analyse de la QoE a demandé un nouveau cadre pour calculer la QoE d'un service OTT. Ce cadre est basé sur le formalisme mathématique des Machines Étendues à États Finis (EFSM), ce qui profite de deux avantages des EFSMs~: les traces des machines suivent les décisions de l'utilisateur et les variables du contexte utilisés comme indicateurs de qualité, seront utilisées ultérieurement pour computer la QoE.La deuxième contribution consiste à mettre en œuvre deux algorithmes. Le premier fait le calcul d'une forme équivalent, ayant la forme d'un arbre qui représente les traces de la machine. Le deuxième utilise les traces et fait le calcul de la QoE pour les états terminaux de chaque trace. Les deux algorithmes peuvent être utilisés comme base d'un outil de monitorage capable de prévoir la valeur de la QoE d'un utilisateur. De plus, une mise en œuvre concrète des ces deux algorithmes comme une extension de l'Outil de Monitorage de Montimage (MMT) est aussi présentée.La troisième contribution présente la validation de l'approche avec un double objectif. D'une part, l'inclusion de paramètres du modèle d'affaires est validée et on détermine leur impact sur la QoE. D'autre part, le modèle de la QoE proposé est validé par la mise en œuvre d'une plateforme d'émulation d'un service OTT qui montre des vidéos perturbés. Cette implémentation est utilisée pour obtenir des valeurs estimées par utilisateurs réels qui sont utilisés pour dériver un modèle approprié de la QoE.La dernière contribution se base sur le cadre donné et fournit un analyse statique d'un service OTT. Cette procédure est réalisé par un troisième algorithme qui calcule la quantité des configurations contenues dans le modèle. En analysant à l'avance touts les scénarios possibles qu'un utilisateur peut rencontrer, le fournisseur des services OTT peut détecter des défauts dans le modèle et le service à une stade précoce du développement