Thèse soutenue

Modélisation, analyse et optimisation de la résilience des infrastructures critiques interdépendantes

FR  |  
EN
Auteur / Autrice : Xing Liu
Direction : Enrico Zio
Type : Thèse de doctorat
Discipline(s) : Sciences et technologies industrielles
Date : Soutenance le 13/12/2017
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Interfaces : matériaux, systèmes, usages (Palaiseau, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire génie industriel (Gif-sur-Yvette, Essonne)
établissement opérateur d'inscription : CentraleSupélec (2015-....)
Jury : Président / Présidente : Pierre-Etienne Labeau
Examinateurs / Examinatrices : Marija Jankovic, Mohamed Hibti
Rapporteurs / Rapporteuses : Marko Čepin, Henrik Hassel

Résumé

FR  |  
EN

La résilience concerne une capacité importante d'un système à résister et à se remettre des événements perturbateurs. L'objectif de cette thèse est de construire un cadre d'analyse et d'optimisation de la résilience des infrastructures critiques interconnectées (ICIs). Dans ce travail, les contributions scientifiques originales comprennent: 1) une approche de modélisation générique pour décrire le comportement dynamique et les processus d'échec en cascade dans les ICIs. 2) basé sur le modèle proposé, une approche quantitative d'évaluation de la résilience de ICIs est développée, où les aspects d'atténuation et de récupération sont évalués; 3) afin de réduire le coût de calcul dans le cas de systèmes à grande échelle, trois méthodes Différentes échelle, trois méthodes différentes d'analyse de sensibilité globale (ANN estimation, ensemble-based, given-data estimation), sont mis en place pour identifier les paramètres de modèle les plus pertinents affectant la résilience du système, puis les performances de ces méthodes sont comparées;4) un modèle hiérarchique est développé pour caractériser les facteurs de stratégies d'amélioration de la résilience. Un problème d’optimisations multi-objectif est formulé et résolu par l'algorithme NSGA-II, afin de fournir un plan optimal pour l'amélioration de la résilience du système. Les méthodes proposées sont mises en œuvre dans les applications, par exemple, un réseau d'alimentation en gaz et un réseau électrique.