Thèse soutenue

La lyophilisation des vaccins : contribution de la modélisation mathématique à l'évaluation de l'hétérogénéité desproduits et des risques de changement d'échelle
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Bernadette Scutella
Direction : Cristian Trelea
Type : Thèse de doctorat
Discipline(s) : Génie des procédés
Date : Soutenance le 15/11/2017
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Agriculture, alimentation, biologie, environnement, santé (Paris ; 2015-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : AgroParisTech (France ; 2007-....)
Laboratoire : Génie et Microbiologie des Procédés Alimentaires - GMPA
Jury : Président / Présidente : Patrick Perré
Examinateurs / Examinatrices : Patrick Perré, Vincenza Calabró, Romain Jeantet, Thomas De Beer, Erwan Bourles, Stéphanie Passot
Rapporteurs / Rapporteuses : Vincenza Calabró, Romain Jeantet, Thomas De Beer

Résumé

FR  |  
EN

La lyophilisation est le procédé de choix dans l'industrie pharmaceutique pour la stabilisation de produits thermosensibles tels que les vaccins. Cependant, en raison du pré-conditionnement du produit dans des flacons individuels, ce processus est difficile à concevoir et aboutit souvent à des lots présentant une hétérogénéité significative dans la qualité du produit final. L'objectif principal de ce doctorat a été le développement d'un modèle mathématique pour la conception du processus de lyophilisation à un niveau de risque donné, c'est à dire un pourcentage de flacons potentiellement non conformes. Le travail a porté sur la compréhension et la quantification des sources possibles responsables de la variabilité des transferts de chaleur et de matière lors du processus. Dans un premier temps, la variabilité du transfert de chaleur entre les flacons a été étudiée en considérant les dimensions du flacon et sa position sur l'étagère de l'équipement. La variabilité des dimensions géométriques observées dans un lot de flacons (i.e., l'aire de contact entre l'étagère et le flacon et la profondeur de concavité du fond) a influencé la distribution du coefficient de transfert de chaleur entre les flacons. De plus, un modèle mathématique original en 3D a été développé dans COMSOL Multiphysics pour expliquer et prédire les transferts de chaleur atypiques observés dans les flacons situés sur les bords de l'étagère lors du processus de lyophilisation. Les phénomènes conductifs à basse pression au sein de la vapeur d'eau ont été reportés comme un mécanisme dominant expliquant ces transferts de chaleur atypiques alors que les phénomènes radiatifs liés à la présence des parois de l'équipement ont toujours été cités dans la littérature. Par ailleurs, ce modèle mathématique en 3D a été utilisé pour étudier l'effet de la configuration de chargement du lyophilisateur et des caractéristiques de l'équipement sur la variabilité du transfert de chaleur. Dans un deuxième temps, la variabilité des transferts de matière a été évaluée sur une solution de saccharose à 5 % en considérant deux paramètres, la résistance de la couche sèche au transfert de matière pendant la sublimation et le temps caractéristique de désorption. La résistance à la couche sèche a été évaluée en combinant deux approches complémentaires, les tests de remontée de pression et la méthode gravimétrique. La variabilité estimée de la résistance à la couche séchée a eu un impact plus important sur la distribution de la température du produit que la variabilité du coefficient de transfert de chaleur. La valeur et la variabilité du temps caractéristique de désorption ont été évaluées pour différentes températures et ont permis de simuler l'hétérogénéité de la teneur en eau finale entre les flacons. Dans la dernière partie du travail, les principales sources quantifiées de variabilité des transferts de chaleur et de matière ont été intégrées dans un modèle mathématique de lyophilisation. Ce modèle dynamique multi-flacons a été utilisé non seulement pour prédire l'évolution de la température et de la teneur en eau du produit pendant la lyophilisation pour un lot de 100 flacons, mais aussi pour estimer le pourcentage de flacons potentiellement non conformes. L'approche de modélisation proposée, étendue à un plus grand nombre de flacons simulés, pourrait être utilisée pour calculer les "design spaces" (espaces de travail) des étapes de dessiccation primaire et secondaire du processus de lyophilisation à un risque connu de pourcentage de flacons non conformes.