Thèse soutenue

Structures bifeuilletées en codimension 1

FR  |  
EN
Auteur / Autrice : Olivier Thom
Direction : Frank LorayDominique Cerveau
Type : Thèse de doctorat
Discipline(s) : Mathématiques et leurs interactions
Date : Soutenance le 01/12/2017
Etablissement(s) : Rennes 1
Ecole(s) doctorale(s) : École doctorale Mathématiques et sciences et technologies de l'information et de la communication (Rennes)
Partenaire(s) de recherche : ComuE : Université Bretagne Loire (2016-2019)
Laboratoire : Institut de recherche mathématique (Rennes ; 1996-....) - IRMAR

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Cette thèse a pour objet l'étude des paires de feuilletages complexes. Plus précisément, on s'intéressera aux paires de feuilletages complexes de codimension 1 dans deux situations différentes : d'un côté il s'agira de germes de feuilletages au voisinage de l'origine de C (la situation "locale"), de l'autre il sera question de feuilletages définis dans un voisinage de dimension 2 d'une courbe complexe (la situation "semi-globale"). Le problème semi-global a pour but la compréhension des voisinages de courbes dans des surfaces complexes ; on obtiendra ainsi des résultats de classification des voisinages particuliers que sont les voisinages munis de deux feuilletages. Pour obtenir cette classification, on aura d'abord besoin d'étudier les paires de feuilletages d'un point de vue local. On présentera ainsi certains résultats à propos de la classification des paires de germes de feuilletages au voisinage d'un point dans C2. Certains des résultats locaux donnent par généralisation des résultats de classification de paires de germes de fonctions en toute dimension ; on présentera plus particulièrement une étude détaillée des paires de germes de fonctions de Morse en toute dimension.