Sous-groupes des groupes de Cremona
Auteur / Autrice : | Christian Urech |
Direction : | Serge Cantat, Jérémy Blanc |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques et applications |
Date : | Soutenance le 28/09/2017 |
Etablissement(s) : | Rennes 1 en cotutelle avec Université de Bâle, Universität Basel |
Ecole(s) doctorale(s) : | École doctorale Mathématiques et sciences et technologies de l'information et de la communication (Rennes) |
Partenaire(s) de recherche : | ComuE : Université Bretagne Loire (2016-2019) |
Laboratoire : Institut de recherche mathématique (Rennes ; 1996-....) |
Résumé
Le groupe de Cremona en n variables Cr_n(C) est le groupe des transformations birationnelles de l'espace projectif complexe de dimension n. Dans cette thèse, on étudie les groupes de Cremona en considérant certaines classes de „grands'' sous-groupes. Dans la première partie on considère des plongements algébriques de Cr_2(C) vers Cr_n(C). On décrit notamment quelques propriétés géométriques d'un plongement de Cr_2(C) dans Cr_5(C) dû à Gizatullin. En outre, on classifie tous les plongements algébriques de Cr_2(C) dans Cr_3(C) et on généralise ce résultat partiellement pour les plongements de Cr_n(C) dans Cr_{n+1}(C). Dans la deuxième partie, on regarde les suites des degrés des transformations birationnelles des variétés définies sur un corps quelconque. On montre qu'il n'existe qu'un nombre dénombrable de telles suites et on donne de nouvelles contraintes sur la croissance des degrés des automorphismes de l'espace affine de dimension n. Dans la troisième partie, on classifie les sous-groupes de Cr_2(C) qui ne contiennent que des éléments elliptiques, c'est-`a-dire des éléments dont les degrés des itérés sont bornés. On en déduit notamment l'alternative de Tits pour les sous-groupes quelconques de Cr_2(C). Dans la dernière partie on montre que tous les sous-groupes simples de type fini de Cr_2(C) sont finis et, sous l'hypothèse d'un lemme conjectural, qu'un groupe simple se plonge dans Cr_2(C) si et seulement s'il se plonge dans PGL_3(C).