Mouillage sur gels mous
Auteur / Autrice : | Menghua Zhao |
Direction : | François Lequeux, Laurent Limat |
Type : | Thèse de doctorat |
Discipline(s) : | Physico-chimie |
Date : | Soutenance le 12/09/2017 |
Etablissement(s) : | Paris Sciences et Lettres (ComUE) |
Ecole(s) doctorale(s) : | École doctorale Physique et chimie des matériaux (Paris ; 2000-....) |
Partenaire(s) de recherche : | Laboratoire : Sciences et ingénierie de la matière molle (Paris ; 1997-....) - Sciences et Ingénierie de la Matière Molle / SIMM |
établissement opérateur d'inscription : Ecole supérieure de physique et de chimie industrielles de la Ville de Paris (1882-....) | |
Jury : | Président / Présidente : Arnaud Antkowiak |
Examinateurs / Examinatrices : François Lequeux, Yapu Zhao, Tetsuharu Narita, Matthieu Roché, Hans-Jürgen Butt | |
Rapporteur / Rapporteuse : Elisabeth Charlaix, Pascal Damman |
Mots clés
Résumé
Dans cette thèse, nous nous sommes intéressés à la statique et la dynamique du mouillage de gouttes d’eau sur des substrats mous tels que des gels, encore connu sous le nom d’élastomouillage. Pour ce faire, nous avons d'abord développé une méthode quantitative de visualisation par strioscopie permettant de mesurer la déformation de la surface d'un film de gel transparent avec une précision élevée. Nous montrons que la déformation superficielle de films mous de silicone (PDMS) dépend de la taille des gouttelettes déposées ainsi que de l'épaisseur et de l’élasticité de ces films. Nous avons construit un modèle basé sur la théorie de l'élasticité linéaire tenant compte de la tension superficielle des gels qui prédit bien la forme et l’amplitude de la déformation de surface. Nous apportons aussi la preuve expérimentale et l'analyse théorique de l’importance de l'hystérèse de l’angle de contact dans la description de la déformation en démontrant que la force tangentielle due à la tension superficielle entre liquide et vapeur à la ligne de contact, souvent négligé, contrôle la déformation de la surface. La dynamique de mouillage est étudiée en dégonflant des gouttelettes sur des films de PDMS avec une épaisseur bien contrôlée. Il est démontré que la dissipation d'énergie dans le gel dépend fortement de l'épaisseur lorsque cette dernière est inférieure à 100 μm). L'effet de freinage viscoélastique et l'effet d'épaisseur sont bien rationalisés avec un modèle basé sur la viscoélasticité linéaire et une simple loi l'échelle qui tient compte de l'effet d'épaisseur capture très bien nos expériences. Enfin, nous démontrons que nous pouvons dériver et guider les gouttelettes en mouvement avec la conception de surfaces couvertes de couches de gels ayant des gradients d'épaisseur.