Thèse soutenue

Avancées de l'imagerie par résonance magnétique à encodage spatiotemporel
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Sina Marhabaie
Direction : Geoffrey BodenhausenPhilippe Pelupessy
Type : Thèse de doctorat
Discipline(s) : Chimie physique
Date : Soutenance le 12/12/2017
Etablissement(s) : Paris Sciences et Lettres (ComUE)
Ecole(s) doctorale(s) : École doctorale Chimie physique et chimie analytique de Paris Centre (Paris ; 2000-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire des biomolécules (Paris ; 2009-....)
établissement de préparation de la thèse : École normale supérieure (Paris ; 1985-....)
Jury : Président / Présidente : Lynn Gladden
Examinateurs / Examinatrices : Geoffrey Bodenhausen, Philippe Pelupessy, Lynn Gladden, Jean-Nicolas Dumez, David G. Gadian
Rapporteurs / Rapporteuses : Jean-Nicolas Dumez, David G. Gadian

Résumé

FR  |  
EN

Il y a plus de soixante-dix ans que la résonance magnétique nucléaire (RMN) a été découverte, mais elle est toujours prospère et vivante, couvrant un large éventail d'applications dans les sciences, technologies et industries. Une application omniprésente de la résonance magnétique nucléaire est une technique d'imagerie appelée imagerie par résonance magnétique (IRM), qui a trouvé beaucoup d'applications en médecine, sciences, et technologie. Les techniques de transformation de Fourier dites par ''encodage dans l’espace k'' sont des méthodes d'IRM basées sur l'acquisition d'un signal de résonance magnétique en fonction d’un paramètre "k" qui sera ensuite transformé en une image par transformation de Fourier. Aujourd'hui, les techniques de Fourier sont les plus importantes en IRM, mais il existe des alternatives parmi lesquelles ''l'encodage spatial'', qui est le sujet principal de cette thèse. Dans l’encodage spatial (également connu sous le terme d’encodage temporel ou encodage spatiotemporel), l'acquisition du signal s'effectue de telle manière que l'intensité du signal ressemble à l'objet. Par conséquent, dans l'encodage spatial, la transformation de Fourier n'est pas nécessaire pour la reconstruction de l'image.Il a été montré que les techniques d'imagerie hybride à balayage unique, qui utilisent l'encodage k traditionnel dans une direction et l'encodage spatiotemporel dans l'autre, sont supérieures aux méthodes traditionnelles qui utilisent l'encodage k dans les deux directions, notamment pour supprimer les effets de variations de fréquence (causées par des champs magnétique inhomogènes, ou par la présence de plusieurs déplacements chimiques, ou toute autre source de variations de fréquence), et conduisent à des images beaucoup moins déformées que les méthodes d'imagerie traditionnelles. Dans cette thèse, l'idée de l'imagerie par résonance magnétique par encodage spatial sera discutée. La formation de l'image et les propriétés des images résultant de différentes séquences d'encodage spatial seront brièvement étudiées.Les effets de la diffusion sur une séquence hybride établie appelée "acquisition rapide par excitation séquentielle et refocalisation" (RASER) sont étudiés. On montrera que dans les séquences d'encodage spatial, l'atténuation du signal due à la diffusion n'est souvent pas uniforme sur l’ensemble de l'objet, provoquant un contraste trompeur dans l'image. Afin d'éliminer ce faux contraste, une séquence d'impulsion comprenant deux impulsions balayées en fréquence (DC-RASER) est proposée. Les résultats expérimentaux sont conformes à nos prévisions théoriques sur les effets de la diffusion dans ces séquences. Ils confirment que l'atténuation du signal due à la diffusion est uniforme sur l’ensemble de l’objet.Afin de développer les applications de l'encodage spatial à balayage unique, nous montrons comment on peut améliorer le contraste dans la séquence originale RASER. En changeant le déroulement de la séquence d'impulsions, nous avons réalisé une variante de RASER appelée RASER avec écho décalé (ES-RASER), qui fournit un niveau de contraste réglable.Enfin, nous montrons comment on peut améliorer quelques aspects des séquences à encodage temporel disponibles. En réarrangeant les gradients positifs et négatifs, nous montrons comment on peut réduire la vitesse de la commutation des gradients. Ceci est important, car une commutation rapide des gradients n'est pas toujours techniquement possible et peut en plus stimuler involontairement le système nerveux du patient. En utilisant un gradient supplémentaire, nous avons pu modifier l'ordre de détection dans la séquence originale d’encodage temporel. Cela conduit à un temps d'écho identique pour tous les échos, et à une atténuation uniforme du signal due à la relaxation. Finalement, nous montrons comment on peut répartir l’acquisition des séquences d'encodage temporel de façon entrelacée, afin de réduire l'atténuation du signal due à la diffusion.