Thèse soutenue

Synthèse de textures dynamiques pour l'étude de la vision en psychophysique et électrophysiologie

FR  |  
EN
Auteur / Autrice : Jonathan Vacher
Direction : Gabriel PeyréCyril Monier
Type : Thèse de doctorat
Discipline(s) : Sciences
Date : Soutenance le 18/01/2017
Etablissement(s) : Paris Sciences et Lettres (ComUE)
Ecole(s) doctorale(s) : Ecole doctorale SDOSE (Paris)
Partenaire(s) de recherche : Etablissement de préparation de la thèse : Université Paris Dauphine-PSL (1968-....)
Laboratoire : Centre de recherche en mathématiques de la décision (Paris)
Jury : Président / Présidente : Laurent David Cohen
Examinateurs / Examinatrices : Laurent David Cohen, Jean-Michel Morel, Bertrand Thirion, Peter Neri, Frédéric Chavane, Eero Peter Simoncelli
Rapporteurs / Rapporteuses : Jean-Michel Morel, Bertrand Thirion

Résumé

FR  |  
EN

Le but de cette thèse est de proposer une modélisation mathématique des stimulations visuelles afin d'analyser finement des données expérimentales en psychophysique et en électrophysiologie. Plus précis\'ement, afin de pouvoir exploiter des techniques d'analyse de données issues des statistiques Bayésiennes et de l'apprentissage automatique, il est nécessaire de développer un ensemble de stimulations qui doivent être dynamiques, stochastiques et d'une complexité paramétrée. Il s'agit d'un problème important afin de comprendre la capacité du système visuel à intégrer et discriminer différents stimuli. En particulier, les mesures effectuées à de multiples échelles (neurone, population de neurones, cognition) nous permette d'étudier les sensibilités particulières des neurones, leur organisation fonctionnelle et leur impact sur la prise de décision. Dans ce but, nous proposons un ensemble de contributions théoriques, numériques et expérimentales, organisées autour de trois axes principaux : (1) un modèle de synthèse de textures dynamiques Gaussiennes spécialement paramétrée pour l'étude de la vision; (2) un modèle d'observateur Bayésien rendant compte du biais positif induit par fréquence spatiale sur la perception de la vitesse; (3) l'utilisation de méthodes d'apprentissage automatique pour l'analyse de données obtenues en imagerie optique par colorant potentiométrique et au cours d'enregistrements extra-cellulaires. Ce travail, au carrefour des neurosciences, de la psychophysique et des mathématiques, est le fruit de plusieurs collaborations interdisciplinaires.