Thèse soutenue

Restauration super-résolution de séquences d'images : applications aux documents d'archives TV

FR  |  
EN
Auteur / Autrice : Feriel Abboud
Direction : Jean-Christophe Pesquet
Type : Thèse de doctorat
Discipline(s) : Signal, Image, Automatique
Date : Soutenance le 15/12/2017
Etablissement(s) : Paris Est
Ecole(s) doctorale(s) : École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'informatique de l'Institut Gaspard Monge (1997-2009)
Jury : Président / Présidente : Nikos Paragios
Examinateurs / Examinatrices : Jean-Christophe Pesquet, Ewa Bednarczuk, Emilie Chouzenoux, Jean-Hugues Chenot, Laurent Najman
Rapporteurs / Rapporteuses : Yves Wiaux, Valeria Ruggiero

Résumé

FR  |  
EN

Au cours du dernier siècle, le volume de vidéos stockées chez des organismes tel que l'Institut National de l'Audiovisuel a connu un grand accroissement. Ces organismes ont pour mission de préserver et de promouvoir ces contenus, car, au-delà de leur importance culturelle, ces derniers ont une vraie valeur commerciale grâce à leur exploitation par divers médias. Cependant, la qualité visuelle des vidéos est souvent moindre comparée à celles acquises par les récents modèles de caméras. Ainsi, le but de cette thèse est de développer de nouvelles méthodes de restauration de séquences vidéo provenant des archives de télévision française, grâce à de récentes techniques d'optimisation. La plupart des problèmes de restauration peuvent être résolus en les formulant comme des problèmes d'optimisation, qui font intervenir plusieurs fonctions convexes mais non-nécessairement différentiables. Pour ce type de problèmes, on a souvent recourt à un outil efficace appelé opérateur proximal. Le calcul de l'opérateur proximal d'une fonction se fait de façon explicite quand cette dernière est simple. Par contre, quand elle est plus complexe ou fait intervenir des opérateurs linéaires, le calcul de l'opérateur proximal devient plus compliqué et se fait généralement à l'aide d'algorithmes itératifs. Une première contribution de cette thèse consiste à calculer l'opérateur proximal d'une somme de plusieurs fonctions convexes composées avec des opérateurs linéaires. Nous proposons un nouvel algorithme d'optimisation de type primal-dual, que nous avons nommé Algorithme Explicite-Implicite Dual par Blocs. L'algorithme proposé permet de ne mettre à jour qu'un sous-ensemble de blocs choisi selon une règle déterministe acyclique. Des résultats de convergence ont été établis pour les deux suites primales et duales de notre algorithme. Nous avons appliqué notre algorithme au problème de déconvolution et désentrelacement de séquences vidéo. Pour cela, nous avons modélisé notre problème sous la forme d'un problème d'optimisation dont la solution est obtenue à l'aide de l'algorithme explicite-implicite dual par blocs. Dans la deuxième partie de cette thèse, nous nous sommes intéressés au développement d'une version asynchrone de notre l'algorithme explicite-implicite dual par blocs. Dans cette nouvelle extension, chaque fonction est considérée comme locale et rattachée à une unité de calcul. Ces unités de calcul traitent les fonctions de façon indépendante les unes des autres. Afin d'obtenir une solution de consensus, il est nécessaire d'établir une stratégie de communication efficace. Un point crucial dans le développement d'un tel algorithme est le choix de la fréquence et du volume de données à échanger entre les unités de calcul, dans le but de préserver de bonnes performances d'accélération. Nous avons évalué numériquement notre algorithme distribué sur un problème de débruitage de séquences vidéo. Les images composant la vidéo sont partitionnées de façon équitable, puis chaque processeur exécute une instance de l'algorithme de façon asynchrone et communique avec les processeurs voisins. Finalement, nous nous sommes intéressés au problème de déconvolution aveugle, qui vise à estimer le noyau de convolution et la séquence originale à partir de la séquence dégradée observée. Nous avons proposé une nouvelle méthode basée sur la formulation d'un problème non-convexe, résolu par un algorithme itératif qui alterne entre l'estimation de la séquence originale et l'identification du noyau. Notre méthode a la particularité de pouvoir intégrer divers types de fonctions de régularisations avec des propriétés mathématiques différentes. Nous avons réalisé des simulations sur des séquences synthétiques et réelles, avec différents noyaux de convolution. La flexibilité de notre approche nous a permis de réaliser des comparaisons entre plusieurs fonctions de régularisation convexes et non-convexes, en terme de qualité d'estimation