Thèse soutenue

Adaptabilité ciblée basée sur des représentations d'erreur non classiques
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Vincent Darrigrand
Direction : Hélène BarucqDavid Pardo
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 01/09/2017
Etablissement(s) : Pau en cotutelle avec Universidad del País Vasco. Facultad de ciencias
Ecole(s) doctorale(s) : École doctorale sciences exactes et leurs applications (Pau, Pyrénées Atlantiques ; 1995-)
Jury : Examinateurs / Examinatrices : David Pardo

Résumé

FR  |  
EN  |  
ES

Dans un contexte d'adaptabilité ciblée, l'erreur commise sur une quantité d'intérêt peut être représentée grâce aux erreurs globales des problèmes direct et adjoint. Cette représentation de l'erreur est majorée par la somme des indicateurs d'erreurs élémentaires. Ces derniers sont alors utilisés pour produire des raffinements de maillage optimaux. Dans ces travaux, nous proposons de représenter l’erreur du problème adjoint via un opérateur alternatif. L’avantage principal de notre approche est que lorsque l'on choisit correctement l'opérateur alternatif, la majoration correspondante de l'erreur à la quantité d'intérêt devient plus précise, pour autant l'adaptabilité issue de l'utilisation de ces nouveaux indicateurs s'en trouve améliorée. Ces représentations peuvent être employées pour concevoir des algorithmes adaptatifs en espace (h), en ordre d’approximation (p) ou les deux (hp), basés sur la norme d’énergie ou bien ciblés sur une quantité d'intérêt. Bien que la méthode puisse être appliquée à une large gamme de problèmes, nous nous concentrons tout d’abord sur des problèmes unidimensionnels (1D), comme le problème d’Helmholtz et le problème de convection-diffusion stationnaire à convection dominante. Les résultats numériques en 1D montrent que, pour les problèmes de propagation d'ondes, les avantages de notre méthode sont notoires lorsque l'on considère l'opérateur de Laplace pour la représentation de l'erreur. Plus précisément, les majorations issues de la nouvelle représentation sont plus précises que celles provenant de la méthode classique et ce si l'on considère l'énergie globale ou bien une quantité d'intérêt particulière. Le phénomène est d’autant plus notable lorsque l'erreur de dispersion (pollution) est significative. Le problème 1D de convection-diffusion stationnaire à convection dominante avec des conditions limites de Dirichlet homogènes présente une couche limite qui produit une perte de stabilité numérique. La nouvelle représentation d'erreur délivre des majorations plus précises. Lorsqu’appliquée à une p-adaptabilité ciblée, la représentation d'erreur alternative permet une capture plus efficace la couche limite, malgré les oscillations numériques parasites existantes. Devant ces résultats encourageants, nous nous penchons sur l'équation d'Helmholtz à deux et trois dimensions (2D et 3D). Nous montrons, au travers de multiples simulations numériques, que les majorations fournies par les représentations d'erreur alternatives sont plus précises que celle de la représentation classique. Lorsque l'on utilise les indicateurs d'erreur alternatifs, un processus naïf de p-adaptabilité ciblée converge, tandis que dans les mêmes conditions, la méthode classique échoue et requiert l'utilisation d'un opérateur de projection ou d'autre techniques pour récupérer la convergence. Dans ce travail, nous fournissons également des directives pour déterminer les opérateurs qui fournissent des représentations d’erreur induisant de majorations précises. Des résultats similaires sont aussi établis tant pour un problème 2D de convection-diffusion stationnaire à convection dominante que pour des problèmes 2D ayant des coefficients de matériaux discontinus. Nous considérons un problème de diagraphie ultra-sonique en cours de forage pour illustrer l'applicabilité de la méthode proposée.