Thèse soutenue

Enrichissement d’une classification supervisée par l’ajout d’attributs issus d’observateurs d’état : application au diagnostic de défaillances d’un siège d’avion robotisé

FR  |  
EN
Auteur / Autrice : Rabih Taleb
Direction : Herman AkdagKevin Guelton
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 06/12/2017
Etablissement(s) : Paris 8
Ecole(s) doctorale(s) : École doctorale Sciences sociales (Saint-Denis, Seine-Saint-Denis ; 2000-....)
Partenaire(s) de recherche : Equipe de recherche : Laboratoire d' informatique avancée de Saint-Denis
Jury : Examinateurs / Examinatrices : François Delmotte, Christophe Marsala, Véronique Carré-Ménétrier, Lynda Seddiki, Arab Ali Chérif
Rapporteurs / Rapporteuses : François Delmotte, Christophe Marsala

Résumé

FR  |  
EN

Ce travail de thèse s’inscrit dans le cadre d’une Convention Industrielle de Formation par la REcherche (CIFRE) ayant pour objectif la mise en place de solutions innovantes pour le diagnostic de défaillances. Il s’agit de répondre au besoin de la société Zodiac Actuation Systems afin de diagnostiquer les défaillances pouvant survenir sur leurs systèmes d’actionnement de sièges d’avion. Premièrement, le cadre ainsi que les motivations de l’étude sont exposés. Ensuite un état de l’art sur les méthodes de diagnostic de défaillances est donné. Puis la problématique de l’hybridation de ces méthodes est abordée. Ceci a permis d’adopter la méthode de classification supervisée pour le diagnostic. Ensuite, les campagnes de mesures, le processus de construction des bases de données ainsi que les différents algorithmes nécessaires pour la classification sont présentés. Une expérimentation sur la partie du dossier d’un siège d’avion est exposée et les résultats sont donnés. Afin d’améliorer les résultats obtenus, une approche de classification renforcée par des observateurs d’état est proposée et appliquée sur le dossier du siège. Ce renforcement est réalisé à l’aide des données estimées par les observateurs tout en construisant des bases de données augmentées. Trois types d’observateurs, linéaire, Takagi-Sugeno (TS) et TS à entrées inconnues (TSEI) sont employés. L’observateur TSEI apparait comme le mieux adapté à notre application. Finalement, une extension de l'approche proposée sur l’ensemble du siège d’avion est proposée. Celle-ci consiste en la mise en œuvre d’observateurs décentralisés TSEI pour chaque sous-ensemble du siège en tenant compte de leurs interconnexions. Ces derniers ont permis d’améliorer les résultats de détection de défaillances sur l’ensemble du siège d’avion.