Thèse soutenue

Images et fibres des applications rationnelles et algèbres d'éclatement

FR  |  
EN
Auteur / Autrice : Quang Hoa Tran
Direction : Marc Chardin
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 17/11/2017
Etablissement(s) : Paris 6
Ecole(s) doctorale(s) : École doctorale Sciences mathématiques de Paris centre (Paris ; 2000-....)
Partenaire(s) de recherche : Laboratoire : Institut de mathématiques de Jussieu-Paris Rive Gauche (1997-....)
Jury : Examinateurs / Examinatrices : Laurent Busé, Antoine Ducros
Rapporteurs / Rapporteuses : Alexandru Dimca

Résumé

FR  |  
EN

Les applications rationnelles sont des objets fondamentaux en géométrie algébrique. Elles sont utilisées pour décrire certains objets géométriques, tels que la représentation paramétrique d'une variété algébrique rationnelle. Plus récemment, les applications rationnelles sont apparues dans des contextes d'informatique pour l'ingénierie, dans le domaine de la modélisation de formes, en utilisant des méthodes de conception assistée par ordinateur pour les courbes et les surfaces. Des paramétrisations des courbes et des surfaces sont utilisées de manière intensive afin décrire des objets dans la modélisation géométrique, tel que structures des voitures, des avions. Par conséquent, l'étude des applications rationnelles est d'intérêt théorique dans la géométrie algébrique et l'algèbre commutative, et d'une importance pratique dans la modélisation géométrique. Ma thèse étudie les images et les fibres des applications rationnelles en relation avec les équations des algèbres de Rees et des algèbres symétriques. Dans la modélisation géométrique, il est important d'avoir une connaissance détaillée des propriétés géométriques de l'objet et de la représentation paramétrique avec lesquels on travaille. La question de savoir combien de fois le même point est peint (c'est-à-dire, correspond à des valeurs distinctes du paramètre), ne concerne pas seulement la variété elle-même, mais également la paramétrisation. Il est utile pour les applications de déterminer les singularités des paramétrisations. Dans les chapitres 2 et 3, on étudie des fibres d'une application rationnelle de P^m dans P^n qui est génériquement finie sur son image. Une telle application est définie par un ensemble ordonné de (n+1) polynômes homogènes de même degré d. Plus précisément, dans le chapitre 2, nous traiterons le cas des paramétrisations de surfaces rationnelles de P² dans P³, et y donnons une borne quadratique en d pour le nombre de fibres de dimension 1 de la projection canonique de son graphe sur son image. Nous déduisons ce résultat d'une étude de la différence du degré initial entre les puissances ordinaires et les puissances saturées. Dans le chapitre 3, on affine et généralise les résultats sur les fibres du chapitre précédent. Plus généralement, nous établissons une borne linéaire en d pour le nombre de fibres (m-1)-dimensionnelles de la projection canonique de son graphe sur son image, en utilisant des idéaux de mineurs de la matrice jacobienne. Dans le chapitre 4, nous considérons des applications rationnelles dont la source est le produit de deux espaces projectifs. Notre principal objectif est d'étudier les critères de birationalité pour ces applications. Tout d'abord, un critère général est donné en termes du rang d'une couple de matrices connues sous le nom "matrices jacobiennes duales". Ensuite, nous nous concentrons sur des applications rationnelles de P¹ x P¹ vers P² en bidegré bas et fournissons de nouveaux critères de birationalité en analysant les syzygies des équations de définition de l'application; en particulier en examinant la dimension de certaines parties bigraduées du module de syzygies. Enfin, les applications de nos résultats au contexte de la modélisation géométrique sont discutées à la fin du chapitre.