Apprentissage de représentations pour les données relationnelles
Auteur / Autrice : | Ludovic Dos Santos |
Direction : | Patrick Gallinari, Benjamin Piwowarski |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 13/12/2017 |
Etablissement(s) : | Paris 6 |
Ecole(s) doctorale(s) : | École doctorale Informatique, télécommunications et électronique de Paris (1992-...) |
Partenaire(s) de recherche : | Laboratoire : LIP6 (1997-....) |
Jury : | Examinateurs / Examinatrices : Marie-Jeanne Lesot |
Rapporteur / Rapporteuse : Rémi Gilleron, Thierry Artières |
Mots clés
Mots clés contrôlés
Résumé
L'utilisation croissante des réseaux sociaux et de capteurs génère une grande quantité de données qui peuvent être représentées sous forme de graphiques complexes. Il y a de nombreuses tâches allant de l'analyse de l'information à la prédiction et à la récupération que l'on peut imaginer sur ces données où la relation entre les noeuds de graphes devrait être informative. Dans cette thèse, nous avons proposé différents modèles pour trois tâches différentes: - Classification des noeuds graphiques - Prévisions de séries temporelles relationnelles - Filtrage collaboratif. Tous les modèles proposés utilisent le cadre d'apprentissage de la représentation dans sa variante déterministe ou gaussienne. Dans un premier temps, nous avons proposé deux algorithmes pour la tâche de marquage de graphe hétérogène, l'un utilisant des représentations déterministes et l'autre des représentations gaussiennes. Contrairement à d'autres modèles de pointe, notre solution est capable d'apprendre les poids de bord lors de l'apprentissage simultané des représentations et des classificateurs. Deuxièmement, nous avons proposé un algorithme pour la prévision des séries chronologiques relationnelles où les observations sont non seulement corrélées à l'intérieur de chaque série, mais aussi entre les différentes séries. Nous utilisons des représentations gaussiennes dans cette contribution. C'était l'occasion de voir de quelle manière l'utilisation de représentations gaussiennes au lieu de représentations déterministes était profitable. Enfin, nous appliquons l'approche d'apprentissage de la représentation gaussienne à la tâche de filtrage collaboratif. Ceci est un travail préliminaire pour voir si les propriétés des représentations gaussiennes trouvées sur les deux tâches précédentes ont également été vérifiées pour le classement. L'objectif de ce travail était de généraliser ensuite l'approche à des données plus relationnelles et pas seulement des graphes bipartis entre les utilisateurs et les items.