Développement de biocathodes pour biopiles enzymatiques utilisant la laccase
Auteur / Autrice : | Mohamed Achraf Blout |
Direction : | Claude Jolivalt, Alain Pailleret |
Type : | Thèse de doctorat |
Discipline(s) : | Physique et Chimie des Matériaux |
Date : | Soutenance le 17/10/2017 |
Etablissement(s) : | Paris 6 |
Ecole(s) doctorale(s) : | École doctorale Physique et chimie des matériaux (Paris ; 2000-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire de réactivité de surface (Paris ; 1985-....) - Laboratoire Interfaces et systèmes électrochimiques (Paris ; 1967-....) |
Jury : | Président / Présidente : Michèle Salmain |
Examinateurs / Examinatrices : Christophe Innocent | |
Rapporteurs / Rapporteuses : Elisabeth Lojou, Michael Holzinger |
Mots clés
Résumé
Les biopiles enzymatiques constituent une alternative intéressante de production d'électricité renouvelable. On s'est intéressé dans ce travail au compartiment cathodique d'une biopile utilisant la laccase, une oxydase multi-cuivres, comme biocatalyseur pour la réduction de l'oxygène (ORR) par transfert direct des électrons. Plusieurs stratégies ont été mises en œuvre afin d'optimiser la cinétique de l'ORR sur électrode de graphite. Une des stratégies a consisté à déposer un film mince de nitrure de carbone amorphe (a-CNx) sur le graphite. La présence de groupements amines de surface a ensuite permis le greffage covalent de la laccase. Des groupements carboxyliques peuvent également être introduits par un traitement électrochimique. En alliant plusieurs techniques de caractérisation, notamment des mesures d'impédance, on a démontré que notre système se comporte comme un réseau de microélectrodes. Pour ce type d'électrode on a mesuré une densité de courant maximale de -44,6 µA/cm2. Dans une autre stratégie, la surface du graphite a été nanostructurée par formation de nanowalls de carbone (CNWs) par dépôt chimique en phase vapeur assisté par plasma. On a optimisé les conditions du traitement ultérieur de fonctionnalisation de la surface par APPJ en ayant recours à des plans d'expériences, ce qui a permis d'atteindre des densités de courants de l'ordre de -1 mA/cm2. On a également étudié l'orientation et la cinétique de greffage de l'enzyme sur une surface d'or en utilisant la technique PM-IRRAS.