Thèse soutenue

Apprentissage faiblement supervisé pour la reconnaissance visuelle

FR  |  
EN
Auteur / Autrice : Thibaut Durand
Direction : Matthieu CordNicolas Thome
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 20/09/2017
Etablissement(s) : Paris 6
Ecole(s) doctorale(s) : École doctorale Informatique, télécommunications et électronique de Paris (1992-...)
Partenaire(s) de recherche : Laboratoire : LIP6 (1997-....)
Jury : Président / Présidente : Francis Bach
Examinateurs / Examinatrices : Cordelia Schmid
Rapporteur / Rapporteuse : Patrick Pérez, Alain Rakotomamonjy

Résumé

FR  |  
EN

Cette thèse s'intéresse au problème de la classification d'images, où l'objectif est de prédire si une catégorie sémantique est présente dans l'image, à partir de son contenu visuel. Pour analyser des images de scènes complexes, il est important d'apprendre des représentations localisées. Pour limiter le coût d'annotation pendant l'apprentissage, nous nous sommes intéressé aux modèles d'apprentissage faiblement supervisé. Dans cette thèse, nous proposons des modèles qui simultanément classifient et localisent les objets, en utilisant uniquement des labels globaux pendant l'apprentissage. L'apprentissage faiblement supervisé permet de réduire le cout d'annotation, mais en contrepartie l'apprentissage est plus difficile. Le problème principal est comment agréger les informations locales (e.g. régions) en une information globale (e.g. image). La contribution principale de cette thèse est la conception de nouvelles fonctions de pooling (agrégation) pour l'apprentissage faiblement supervisé. En particulier, nous proposons une fonction de pooling « max+min », qui unifie de nombreuses fonctions de pooling. Nous décrivons comment utiliser ce pooling dans le framework Latent Structured SVM ainsi que dans des réseaux de neurones convolutifs. Pour résoudre les problèmes d'optimisation, nous présentons plusieurs solveurs, dont certains qui permettent d'optimiser une métrique d'ordonnancement (ranking) comme l'Average Precision. Expérimentalement, nous montrons l'intérêt nos modèles par rapport aux méthodes de l'état de l'art, sur dix bases de données standard de classification d'images, incluant ImageNet.