Thèse soutenue

Etude de cryptosystèmes à clé publique basés sur les codes MDPC quasi-cycliques

FR  |  
EN
Auteur / Autrice : Julia Chaulet
Direction : Nicolas Sendrier
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 20/03/2017
Etablissement(s) : Paris 6
Ecole(s) doctorale(s) : École doctorale Informatique, télécommunications et électronique de Paris (1992-...)
Partenaire(s) de recherche : Laboratoire : Institut national de recherche en informatique et en automatique (France). Centre de recherche de Paris (Paris)
Jury : Président / Présidente : Jean-Claude Bajard
Examinateurs / Examinatrices : Caroline Fontaine, Jean-Pierre Tillich
Rapporteur / Rapporteuse : Philippe Gaborit, Pierre Loidreau

Résumé

FR  |  
EN

L’utilisation des codes MDPC (Moderate Density Parity Check) quasi-cycliques dans le cryptosystème de McEliece offre un schéma de chiffrement post-quantique dont les clés ont une taille raisonnable et dont le chiffrement et le déchiffrement n’utilisent que des opérations binaires. C’est donc un bon candidat pour l’implémentation embarquée ou à bas coût.Dans ce contexte, certaines informations peuvent être exploitées pour construire des attaques par canaux cachés.Ici, le déchiffrement consiste principalement à décoder un mot de code bruité. Le décodeur utilisé est itératif et probabiliste : le nombre d’itérations de l'algorithme varie en fonction des instances et certains décodages peuvent échouer. Ces comportements ne sont pas souhaitables car ils peuvent permettre d’extraire des informations sur le secret.Une contremesure possible est de limiter le nombre d’instances de chiffrement avec les mêmes clés. Une autre façon serait de recourir à un décodage à temps constant dont la probabilité d’échec au décodage est négligeable. L’enjeu principal de cette thèse est de fournir de nouveaux outils pour analyser du comportement du décodeur pour la cryptographie.Dans un second temps, nous expliquons pourquoi l'utilisation des codes polaires n'est pas sûre pour le cryptosystème de McEliece. Pour ce faire, nous utilisons de nouvelles techniques afin de résoudre une équivalence de codes. Nous exhibons de nombreux liens entre les codes polaires et les codes de Reed-Muller et ainsi d'introduire une nouvelle famille de codes : les codes monomiaux décroissants. Ces résultats sont donc aussi d'un intérêt indépendant pour la théorie des codes.