Thèse soutenue

Modèles mathématiques et simulations numériques de l'hémodynamique de l'oeil

FR  |  
EN
Auteur / Autrice : Matteo Carlo Maria Aletti
Direction : Jean-Frédéric GerbeauDamiano Lombardi
Type : Thèse de doctorat
Discipline(s) : Mathématiques Appliquées
Date : Soutenance le 30/05/2017
Etablissement(s) : Paris 6
Ecole(s) doctorale(s) : École doctorale Sciences mathématiques de Paris centre (Paris ; 2000-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Jacques-Louis Lions (Paris ; 1997-....)
Jury : Président / Présidente : Olivier Pironneau
Examinateurs / Examinatrices : Giovanna Guidoboni
Rapporteur / Rapporteuse : Christian Vergara, Stéphanie Salmon

Résumé

FR  |  
EN

La structure de l’oeil permet d’observer la microcirculation, grâce aux caméras de fond d’oeil. Ces appareils sont bon marché et couramment utilisés dans la pratique clinique, permettant le dépistage de maladies oculaires. La capacité des vaisseaux à adapter leur diamètre (autorégulation) afin de réguler le débit sanguin est importante dans la microcirculation. L’hémodynamique de l’oeil est impactée par la pression à l’intérieur du globe oculaire (IOP), qui est à son tour influencée par le flux sanguin oculaire. Les altérations de l’autorégulation et l’IOP jouent un rôle dans les maladies oculaires. La modélisation mathématique peut aider à interpréter l’interaction entre ces phénomènes et à mieux exploiter les données médicales disponibles. Dans la première partie, nous présentons un modèle simplifié d’interaction fluidestructure qui inclut l’autorégulation, appliqué à un reseau 3D obtenu par imagerie médicale. Les cellules musculaires lisses regulant le diamètre du vaisseau sont modélisés dans la structure. Ensuite, nous utilisons des équations de poroélasticité pour décrire le flux sanguin dans la choroïde, dans un modèle multi-compartiments de l’oeil. Cette approche permet de rendre compte de la transmission de la pulsatilité de la choroïde à la chambre antérieure, où l’IOP est mesurée. Nous présentons des résultats préliminaires sur la choroïde, l’humeur aqueuse et sur la choroïde couplée avec la vitrée. Enfin, nous présentons un modèle d’ordre réduit pour accélérer des simulations multi-physique. Des modèles de haute précision sont utilisés pour les compartiments d’intérêt et une représentation réduite de l’opérateur de Steklov-Poincaré est utilisée pour les autres compartiments.