Approche algébrique sur l'équivalence de codes.
Auteur / Autrice : | Mohamed Ahmed Saeed |
Direction : | Ayoub Otmani, Mohsin Hashim |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 18/12/2017 |
Etablissement(s) : | Normandie en cotutelle avec University of Khartoum |
Ecole(s) doctorale(s) : | École doctorale mathématiques, information et ingénierie des systèmes (Caen) |
Partenaire(s) de recherche : | Equipe de recherche : Laboratoire d'informatique, de traitement de l'information et des systèmes (Saint-Etienne du Rouvray, Seine-Maritime ; 2006-...) |
Laboratoire : Laboratoire d'informatique, de traitement de l'information et des systèmes (Saint-Etienne du Rouvray, Seine-Maritime ; 2006-...) | |
Etablissement de préparation de la thèse : Université de Rouen Normandie (1966-....) | |
Jury : | Président / Présidente : Philippe Gaborit |
Rapporteur / Rapporteuse : Daniel Augot, Nicolas Sendrier |
Résumé
Le problème d’´équivalence de code joue un rôle important dans la théorie de code et la cryptographie basée sur le code. Cela est dû à son importance dans la classification des codes ainsi que dans la construction et la cryptanalyse des cryptosystèmes à base de codes. Il est également lié à un problème ouvert d’isomorphisme de graphes, un problème bien connu dans le domaine de la théorie de la complexité. Nous prouvons pour les codes ayant un hull trivial qu’il existe une réduction polynomiale de l’équivalence par permutation de codes à l’isomorphisme de graphes. Cela montre que cette sous-classe d’équivalence de permutation n’est pas plus dure que l’isomorphisme de graphes. Nous introduisons une nouvelle méthode pour résoudre le problème d’équivalence de code. Nous développons des approches algébriques pour résoudre le problème dans ses deux versions : en permutation et en diagonale. Nous construisons un système algébrique en établissant des relations entre les matrices génératrices et les matrices de parité des codes équivalents. Nous nous retrouvons avecun système plusieurs variables d’équations linéaires et quadratiques qui peut être résolu en utilisant des outils algébriques tels que les bases de Groebner et les techniques associées. Il est possible en théorie de résoudre l’équivalence de code avec des techniques utilisant des bases de Groebner. Cependant, le calcul en pratique devient complexe à mesure que la longueur du code augmente. Nous avons introduit plusieurs améliorations telles que la linéarisation par bloc et l’action de Frobenius. En utilisant ces techniques, nous identifions de nombreux cas où le problème d’équivalence de permutation peut être résolu efficacement. Notre méthode d’équivalence diagonale résout efficacement le problème dans les corps de petites tailles, à savoir F3 et F4. L’augmentation de la taille du corps entraîne une augmentation du nombre de variables dans notre système algébrique, ce qui le rend difficile à résoudre. Nous nous intéressons enfin au problème d’isomorphisme de graphes en considérant un système algébrique quadratique pour l’isomorphisme de graphes. Pour des instances tirées aléatoirement, le système possède des propriétés intéressantes en termes de rang de la partie linéaire et du nombre de variables. Nousrésolvons efficacement le problème d’isomorphisme de graphes pour des graphes aléatoires avec un grand nombre de sommets, et également pour certains graphes réguliers tels que ceux de Petersen, Cubical et Wagner.123