Un cadre algébrique pour le raisonnement qualitatif en présence d'informations hétérogènes : application aux raisonnements multi-échelle et spatio-temporel
Auteur / Autrice : | Quentin Cohen-Solal |
Direction : | Maroua Bouzid |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 11/12/2017 |
Etablissement(s) : | Normandie |
Ecole(s) doctorale(s) : | École doctorale mathématiques, information et ingénierie des systèmes (Caen) |
Partenaire(s) de recherche : | Laboratoire : Groupe de recherche en informatique, image, automatique et instrumentation de Caen (1995-....) |
établissement de préparation : Université de Caen Normandie (1971-....) | |
Jury : | Président / Présidente : Odile Papini |
Examinateurs / Examinatrices : Maroua Bouzid, Jérôme Euzenat, Jean-François Condotta, Philippe Balbiani, Alexandre Niveau |
Mots clés
Mots clés contrôlés
Résumé
Parmi les différentes formes de raisonnement étudiées dans le contexte de l'intelligence artificielle, le raisonnement qualitatif permet d'inférer de nouvelles connaissances dans le contexte d'informations imprécises, incomplètes et dépourvues de valeurs numériques. Il permet par exemple de déduire de nouvelles informations à partir d'un ensemble d'informations spatiales telles que « la France est frontalière de l'Allemagne », « la Suisse est à l'est de la France », « l'Italie est en Europe » et « le Luxembourg est proche de la France ». Il peut également être utilisé pour résoudre des abstractions de problèmes quantitatifs difficiles à résoudre, afin par exemple d'accélérer la résolution de ces problèmes.De nombreux formalismes de raisonnement qualitatif ont été proposés dans la littérature. Ils ne se focalisent cependant que sur un seul aspect du monde, alors que la majorité des applications requièrent la prise en compte d'informations hétérogènes. Afin de répondre à ces besoins, plusieurs combinaisons et extensions de formalismes qualitatifs, comme le raisonnement spatio-temporel et le raisonnement multi-échelle, ont récemment été proposées dans la littérature. Le raisonnement spatio-temporel permet de raisonner dans le contexte d'informations spatiales et temporelles interdépendantes. Le raisonnement multi-échelle permet de raisonner avec des informations de précisions différentes, et en particulier de lever des incohérences apparentes.Dans cette thèse, nous nous intéressons au raisonnement multi-échelle, au raisonnement spatio-temporel et aux combinaisons de formalismes qualitatifs.Nous proposons d'étendre le raisonnement qualitatif temporel multi-échelle pour prendre en compte le fait que les intervalles de temps peuvent être perçus comme des instants à certaines échelles de précision, de formaliser intégralement ce raisonnement et d'étudier la décision de la cohérence dans ce contexte ainsi que sa complexité. Nous montrons en particulier que ce formalisme permet de décider la cohérence et que le problème de décision de la cohérence est NP-complet, même dans le cas le plus simple.En outre, nous proposons un cadre général permettant de raisonner sur les séquences temporelles d'informations qualitatives, une forme de description spatio-temporelle. Ce cadre permet notamment de raisonner dans le contexte d'évolutions complexes. Par exemple, les entités considérées peuvent avoir des caractéristiques préservées au cours du temps, évoluer de manière dépendante les unes par rapport aux autres, tout en ayant un comportement potentiellement irréversible et différent selon leur nature. De plus, dans ce cadre, le raisonnement est plus performant computationnellement que les approches de l'état de l'art. Nous étudions en particulier la décision de la cohérence dans le contexte spécifique de régions mobiles de taille constante, et montrons que ce cadre permet effectivement de décider la cohérence.De surcroît, nous proposons un cadre formel unifiant plusieurs formes d'extensions et de combinaisons de formalismes qualitatifs, incluant le raisonnement multi-échelle et les séquences temporelles. Ce cadre permet de raisonner dans le contexte de chacune de ces combinaisons et extensions, mais également d'étudier de manière unifiée la décision de la cohérence et sa complexité. Nous établissons en particulier deux théorèmes complémentaires garantissant que la décision de la cohérence est polynomiale, et nous les utilisons pour prouver que plusieurs fragments de séquences temporelles sont traitables.Nous généralisons également la définition principale de formalisme qualitatif afin d'inclure des formalismes qualitatifs exclus des définitions de la littérature, importants dans le cadre des combinaisons.