Thèse soutenue

Contributions à l’Ordonnancement en Temps Réel pour les Systèmes Autonomes en Energie

FR  |  
EN
Auteur / Autrice : Rola El Osta
Direction : Maryline ChettoRafic Hage Chehade
Type : Thèse de doctorat
Discipline(s) : Automatique et Informatique Appliquée
Date : Soutenance le 26/10/2017
Etablissement(s) : Nantes
Ecole(s) doctorale(s) : École doctorale Mathématiques et sciences et technologies de l'information et de la communication (Rennes)
Partenaire(s) de recherche : Laboratoire : Laboratoire des Sciences du Numérique de Nantes
COMUE : Université Bretagne Loire (2016-2019)
Jury : Président / Présidente : Abdelhamid Mellouk
Examinateurs / Examinatrices : Hussein El Ghor
Rapporteur / Rapporteuse : Mathieu Jan, Daniel Chillet

Mots clés

FR

Résumé

FR  |  
EN

La récupération de l’énergie ambiante en temps réel est une technique qui permet d’allonger significativement la durée de vie des systèmes embarqués, aujourd’hui limitée par la quantité d’énergie stockable dans les batteries traditionnelles. La récupération d’énergie renouvelable (energy harvesting) comme celle envisagée pour de nombreux objets sans fil, rend possible un fonctionnement quasiperpétuel de ces systèmes, sans intervention humaine, car sans recharge périodique de batterie ou de pile. Concevoir ce type de système autonome d’un point de vue énergétique devient très complexe lorsque celui-ci a en plus un comportement contraint par le temps et en particulier doit respecter des échéances de fin d’exécution au plus tard. Comme pour tout système temps réel, une problématique incontournable est de trouver un mécanisme d’ordonnancement dynamique capable de prendre en compte conjointement deux contraintes clés : le temps et l’énergie. Proposer et évaluer de nouvelles techniques d’ordonnancement pour que le système adopte un comportement énergétiquement neutre dans le respect des contraintes temps réel constitue le point central cette thèse. Plus précisément, nous considérons ici un ensemble de tâches mixtes constitué de tâches périodiques et de tâches apériodiques souples sans échéance. L’architecture matérielle retenue est monoprocesseur. Les tâches apériodiques ne sont connues qu’au moment de leur arrivée et les tâches périodiques sont supposées ordonnançables par l’ordonnanceur optimal ED-H. La question à laquelle nous voulons apporter une réponse se résume comme suit : comment servir les tâches apériodiques pour minimiser leur temps de réponse sans remettre en question la faisabilité des tâches périodiques. Dans cette thèse, nous répondons à cette question de façon incrémentale. Dans un premier temps, nous étendons le serveur classique dit en arrière plan au contexte du energy harvesting avec la proposition de deux nouveaux serveurs. Simples à implémenter, ces techniques offrent toutefois des performances limitées. C’est pourquoi, dans un second temps, nous proposons un nouveau serveur basé sur le vol de temps creux (en anglais, Slack Stealing), au sens des notions de laxité temporelle et de laxité énergétique. Une évaluation théorique de celui-ci nous permet d’établir son optimalité. Vu l’implémentation relativement complexe de ce serveur, dans un dernier temps, nous proposons un nouveau serveur dit à préservation de bande (en anglais, Total Bandwith), basé sur l’attribution d’échéances fictives avec une implémentation plus simple. Une étude expérimentale accompagne nos propositions et permet d’attester la performance de nouveaux serveurs de tâches apériodiques spécifiquement conçus pour les systèmes temps réel autonomes.