Thèse soutenue

Développement de membranes à base de polybenzimidazole et de liquides ioniques pour applications à haute température comme membranes échangeuses de protons (PEMs) et pour la séparation de gaz

FR  |  
EN
Auteur / Autrice : Parashuram Kallem
Direction : Anne JulbeReyes Mallada
Type : Thèse de doctorat
Discipline(s) : Chimie séparative, matériaux et procédés
Date : Soutenance le 15/06/2017
Etablissement(s) : Montpellier en cotutelle avec Universidad de Zaragoza (Espagne)
Ecole(s) doctorale(s) : École doctorale Sciences Chimiques Balard (Montpellier ; 2003-....)
Partenaire(s) de recherche : Laboratoire : Institut Européen des membranes (Montpellier)
Jury : Président / Présidente : Joao Paulo Serejo Goulao Crespo
Examinateurs / Examinatrices : Anne Julbe, Reyes Mallada, Joao Paulo Serejo Goulao Crespo, Richard D. Noble, Alfredo Ortiz
Rapporteur / Rapporteuse : Joao Paulo Serejo Goulao Crespo, Richard D. Noble

Résumé

FR  |  
EN

1. Membranes échangeuses de protons à haute température (HT-PEM) pour application dans les piles à combustible:Le succès des piles à combustible à base de HT-PEM dépend fortement du matériau membranaire. D’importants progrès ont été accomplis dans la conception de PEMs à transport facilité de protons. L'objectif de la première partie de ce travail de thèse était de fabriquer des membranes électrolytes à haute conductivité, capables de fonctionner au-dessus de 120°C dans des conditions anhydres, sans acides minéraux, et sans sacrifier la résistance mécanique. La stratégie suivie combine l’utilisation de micro-filtres (support) à base de polybenzimidazole (PBI) présentant un réseau de pores ordonnés, et de liquides ioniques (ILs)à base de polyimidazolium comme phase conductrice. Deux types de micro-filtres de PBI ont été préparés: avec un réseau de pores droits (SPBI), ou avec une structure poreuse hiérarchique (HPBI). Les ILs polymérisés (PIL) suscitent un grand intérêt comme tous les électrolytes flexibles à l'état solide en raison de leur sécurité d’utilisation et de leur bonne stabilité thermique, chimique et électrochimique. Dans ce travail, un IL monomèrique protique 1-H-3-vinylimidazolium bis(trifluoromethanesulfonyl)imide a été choisi pour sa conductivité protonique élevée, sa faible rétention d'eau et sa bonne stabilité thermique. Puisque les performances d’une PEM formée par immersion d’un support poreux dans un IL dépendent surtout de la structure poreuse du support, il est essentiel d’optimiser l’architecture des pores réservoirs. Ainsi, nos travaux visent à améliorer à la fois la conductivité ionique et la stabilité dimensionnelle des PEMs à base de PIL par une conception appropriée de l'architecture poreuse. En effet, la faible stabilité dimensionnelle et mécanique du poly[1-(3H-imidazolium)éthylène] bis(trifluorométhanesulfonyl) imide est améliorée grâce à son infiltration dans un support PBI architecturé. La configuration d'infiltration, l'addition d’agent réticulant et les conditions de polymérisation UV ''in situ'' ont été considérées comme paramètres d'optimisation pour les deux types de micro-tamis en PBI.2. Membranes à base de liquide ionique supporté (SILM) pour la valorisation du méthane:La valorisation du gaz naturel, intégrant l'élimination de CO2 et N2, est l’une des applications de séparation des gaz industriels où les membranes sont une alternative prometteuse à petite échelle. L'objectif de nos travaux était de développer des membranes de type SILM, sélectives au CH4. Notre stratégie combine des micro-tamis à base polybenzimidazole (PBI) comme supports présentant une bonne endurance et de bonnes propriétés thermiques, et des liquides ioniques (ILs) protiques avec des ions imidazolium et trifluorométhane sulfonylimide pour la solubilité du CH4. Bien que la faible pression de vapeur du IL protique atténue sa volatilité dans les SILMs traditionnels, son expulsion hors des pores reste une préoccupation majeure. Un design approprié du support, avec des pores submicroniques, combiné à un IL de tension superficielle élevée, devrait générer des SILMs plus stables, adaptées aux applications à pression transmembranaire modérée ou élevée. Ainsi, des supports PBI à porosité aléatoire (RPBI), obtenus par séparation de phase, ont été largement utilisés. En outre, la polymérisation des RTILs peut fournir d’autres avantages en termes de sécurité, de stabilité et de propriétés mécaniques. Dans cette étude, trois classes de SILMs à base de PBI, avec le IL protique 1-H-3-methylimidazolium bis(trifluoromethane sulfonyl)imide (IL), le monomérique 1-H-3-vinyllimidazolium bis(trifluoromethane sulfonyl)imide (MIL) et le polymérique poly[1-(3H-imidazolium)ethylene] bis(trifluoromethanesulfonyl)imide (PIL) ont été fabriqués avec succès et caractérisées en perméation de gaz purs. Des membranes hautement permsélectives au méthane ont été obtenues, qui sont très prometteuses pour la séparation de mélanges de gaz tels que CH4/N2