Thèse soutenue

Cartographie de la dynamique microscopique dans la matière molle sous sollicitation

FR  |  
EN
Auteur / Autrice : Mohamed Yassine Nagazi
Direction : Luca Cipelletti
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 02/05/2017
Etablissement(s) : Montpellier
Ecole(s) doctorale(s) : École doctorale Information, Structures, Systèmes (Montpellier ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Charles Coulomb (Montpellier)
Jury : Président / Présidente : Lucyna Firlej
Examinateurs / Examinatrices : Luca Cipelletti, Lucyna Firlej, Costantino Creton, Jérôme Crassous, Philippe Marguerès
Rapporteurs / Rapporteuses : Costantino Creton, Jérôme Crassous

Résumé

FR  |  
EN

Au cours de ce travail, nous avons proposé une caractérisation "multi-échelle" des matériaux mous à travers des montages originaux permettant la mesure simultanée des quantités macroscopiques et microscopiques. Dans une première partie de nos travaux, nous avons associé une méthode optique introduite récemment, la diffusion multiple de la lumière résolue spatialement (PCI-DWS), avec une sollicitation thermique, afin de suivre l’évolution de la microstructure d’échantillons à base de corps gras lors d’une rampe de température. Ces expériences ont permis d’identifier des transitions de phase par PCI-DWS et de les localiser spatialement dans des échantillons hétérogènes.Dans une deuxième série d’expériences, la même méthode optique a été couplée à des essais mécaniques réalisés avec une machine de traction commerciale. Pour des éprouvettes de polymère semi-cristallin, nous avons mesuré la déformation de l’éprouvette par PCI-DWS, sans avoir recours à des marqueurs de surface, contrairement aux méthodes d’imagerie couramment utilisées. Pour le même polymère, nous avons suivi la dynamique microscopique lors d’essais de traction dans les deux régimes, élastique et plastique. Nous avons montré que la dynamique microscopique et la relaxation de la contrainte lors de tests de traction à déformation imposée sont liées par une relation étonnement simple, que nous avons pu modéliser. Dans une dernière partie de la thèse, nous avons conçu et réalisé un prototype d’instrument permettant de mesurer simultanément la dynamique microscopique, la force et le déplacement lors d’essais de traction sur des élastomères. Grâce à cet instrument, nous avons pu mettre en évidence l’existence de précurseurs dynamiques microscopiques qui précèdent de milliers de secondes l’apparition de signes macroscopiques de la défaillance du matériau.