Thèse soutenue

Quantification du mouvement et de la déformation cardiaques à partir d'IRM marquée tridimensionnelle sur des données acquises par des imageurs Philips

FR  |  
EN
Auteur / Autrice : Yitian Zhou
Direction : Denis Friboulet
Type : Thèse de doctorat
Discipline(s) : Traitement du signal et de l'image
Date : Soutenance le 03/07/2017
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : École doctorale Électronique, électrotechnique, automatique (Lyon)
Partenaire(s) de recherche : établissement opérateur d'inscription : Institut national des sciences appliquées (Lyon ; 1957-....)
Laboratoire : CREATIS - Centre de Recherche et d'Application en Traitement de l'Image pour la Santé (Lyon ; 2007-....) - Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé / CREATIS
Jury : Président / Présidente : Jean-Philippe Thiran
Examinateurs / Examinatrices : Denis Friboulet, Jean-Philippe Thiran, Bart Bijnens, Isabelle Bloch, Olivier Bernard, Mathieu De Craene
Rapporteurs / Rapporteuses : Bart Bijnens, Isabelle Bloch

Résumé

FR  |  
EN

Les maladies cardiovasculaires sont parmi les principales causes de mortalité à l’échelle mondiale. Un certain nombre de maladies cardiaques peuvent être identifiées et localisées par l’analyse du mouvement et de la déformation cardiaques à partir de l’imagerie médicale. Cependant, l’utilisation de ces techniques en routine clinique est freinée par le manque d’outils de quantification efficaces et fiables. Dans cette thèse, nous introduisons un algorithme de quantification appliqué aux images IRM marquées. Nous présentons ensuite un pipeline de simulation qui génère des séquences cardiaques synthétiques (US et IRM). Les principales contributions sont décrites ci-dessous. Tout d’abord, nous avons proposé une nouvelle extension 3D de la méthode de la phase harmonique. Le suivi de flux optique en utilisant la phase a été combiné avec un modèle de régularisation anatomique afin d’estimer les mouvements cardiaques à partir des images IRM marquées. En particulier, des efforts ont été faits pour assurer une estimation précise de la déformation radiale en imposant l’incompressibilité du myocarde. L’algorithme (dénommé HarpAR) a ensuite été évalué sur des volontaires sains et des patients ayant différents niveaux d’ischémie. HarpAR a obtenu la précision de suivi comparable à quatre autres algorithmes de l’état de l’art. Sur les données cliniques, la dispersion des déformations est corrélée avec le degré de fibroses. De plus, les segments ischémiques sont distingués des segments sains en analysant les courbes de déformation. Deuxièmement, nous avons proposé un nouveau pipeline de simulation pour générer des séquences synthétiques US et IRM pour le même patient virtuel. Les séquences réelles, un modèle électromécanique (E/M) et les simulateurs physiques sont combinés dans un cadre unifié pour générer des images synthétiques. Au total, nous avons simulé 18 patients virtuels, chacun avec des séquences synthétiques IRM cine, IRM marquée et US 3D. Les images synthétiques ont été évaluées qualitativement et quantitativement. Elles ont des textures d’images réalistes qui sont similaires aux acquisitions réelles. De plus, nous avons également évalué les propriétés mécaniques des simulations. Les valeurs de la fraction d’éjection et de la déformation locale sont cohérentes avec les valeurs de référence publiées dans la littérature. Enfin, nous avons montré une étude préliminaire de benchmarking en utilisant les images synthétiques. L'algorithme générique gHarpAR a été comparé avec un autre algorithme générique SparseDemons en termes de précision sur le mouvement et la déformation. Les résultats montrent que SparseDemons surclasse gHarpAR en IRM cine et US. En IRM marquée, les deux méthodes ont obtenu des précisions similaires sur le mouvement et deux composants de déformations (circonférentielle et longitudinale). Toutefois, gHarpAR estime la déformation radiale de manière plus précise, grâce à la contrainte d’incompressibilité du myocarde.