Thèse soutenue

Développement d'un détecteur d'avalanche à coïncidence de silicium 3D (3D-SiCAD) pour le suivi de particules chargées
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Matteo Maria Vignetti
Direction : Francis Calmon
Type : Thèse de doctorat
Discipline(s) : Électronique, électrotechnique et automatique
Date : Soutenance le 09/03/2017
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : École doctorale Électronique, électrotechnique, automatique (Lyon)
Partenaire(s) de recherche : établissement opérateur d'inscription : Institut national des sciences appliquées (Lyon ; 1957-....)
Laboratoire : INL - Institut des Nanotechnologies de Lyon, UMR5270 (Rhône) - Institut des Nanotechnologies de Lyon / INL
Jury : Président / Présidente : Denis Dauvergne
Examinateurs / Examinatrices : Francis Calmon, Denis Dauvergne, Lucio Pancheri, Wilfried Patrick Uhring, Patrick Pittet, Aurore Savoy-Navarro
Rapporteurs / Rapporteuses : Lucio Pancheri, Wilfried Patrick Uhring

Résumé

FR  |  
EN

L’objectif de cette thèse est de développer un détecteur innovant de particules chargées, dénommé 3D Silicon Coincidence Avalanche Detector (3D-SiCAD), réalisable en technologie silicium CMOS standard avec des techniques d’intégration 3D. Son principe de fonctionnement est basé sur la détection en "coïncidence" entre deux diodes à avalanche en mode "Geiger" alignées verticalement, avec la finalité d’atteindre un niveau de bruit bien inférieur à celui de capteurs à avalanche standards, tout en gardant les avantages liés à l’utilisation de technologies CMOS; notamment la grande variété d’offres technologiques disponibles sur le marché, la possibilité d’intégrer dans un seul circuit un système complexe de détection, la facilité de migrer et mettre à jour le design vers une technologie CMOS plus moderne, et le faible de coût de fabrication. Le détecteur développé dans ce travail se révèle particulièrement adapté au domaine de la physique des particules de haute énergie ainsi qu’à la physique médicale - hadron thérapie, où des performances exigeantes sont demandées en termes de résistance aux rayonnements ionisants, "material budget", vitesse, bruit et résolution spatiale. Dans ce travail, un prototype a été conçu et fabriqué en technologie HV-CMOS 0,35µm, en utilisant un assemblage 3D de type "flip-chip" avec pour finalité de démontrer la faisabilité d’un tel détecteur. La caractérisation du prototype a finalement montré que le dispositif développé permet de détecter des particules chargées avec une excellente efficacité de détection, et que le mode "coïncidence" réduit considérablement le niveau de bruit. Ces résultats très prometteurs mettent en perspective la réalisation d’un système complet de détection CMOS basé sur ce nouveau concept.