Thèse soutenue

Introduction de la confidentialité dans les moteurs de recherche Web actuels

FR  |  
EN
Auteur / Autrice : Albin Petit
Direction : Lionel BrunieMichael Granitzer
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 15/03/2017
Etablissement(s) : Lyon en cotutelle avec Universität Passau (Allemagne)
Ecole(s) doctorale(s) : École doctorale InfoMaths (Lyon ; 2009-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : Institut national des sciences appliquées (Lyon ; 1957-....)
Laboratoire : Laboratoire d'InfoRmatique en Images et Systèmes d'information (Ecully, Rhône ; 2003-....) - Laboratoire d'InfoRmatique en Image et Systèmes d'information / LIRIS
Jury : Président / Présidente : Catherine Berrut
Examinateurs / Examinatrices : Lionel Brunie, Michael Granitzer, Catherine Berrut, Claude Castelluccia, Rüdiger Kapitza, Harald Kosch, Sonia Ben Mokhtar, Mathias Lux
Rapporteur / Rapporteuse : Claude Castelluccia, Rüdiger Kapitza

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Au cours des dernières années les progrès technologiques permettant de collecter, stocker et traiter d'importantes quantités de données pour un faible coût, ont soulevés de sérieux problèmes concernant la vie privée. La protection de la vie privée concerne de nombreux domaines, en particulier les sites internet fréquemment utilisés comme les moteurs de recherche (ex. : Google, Bing, Yahoo!). Ces services permettent aux utilisateurs de retrouver efficacement du contenu sur Internet en exploitant leurs données personnelles. Dans ce contexte, développer des solutions pour permettre aux utilisateurs d'utiliser ces moteurs de recherche tout en protégeant leurs vies privées est devenu primordial. Dans cette thèse, nous introduirons SimAttack, une attaque contre les solutions protégeant la vie privée de l'utilisateur dans ses interactions avec les moteurs de recherche. Cette attaque vise à retrouver les requêtes initialement envoyées par l'utilisateur. Nous avons montré avec cette attaque que trois mécanismes représentatifs de l’état de l’art ne sont pas satisfaisants pour protéger la vie privée des utilisateurs. Par conséquent, nous avons développé PEAS, un nouveau mécanisme de protection qui améliore la protection de la vie privée de l'utilisateur. Cette solution repose sur deux types de protection : cacher l'identité de l'utilisateur (par une succession de deux serveurs) et masquer sa requête (en la combinant avec des fausses requêtes). Afin de générer des fausses requêtes réalistes, PEAS se base sur les précédentes requêtes envoyées par les utilisateurs du système. Pour finir, nous présenterons des mécanismes permettant d'identifier la sensibilité des requêtes. Notre objectif est d'adapter les mécanismes de protection existants pour protéger uniquement les requêtes sensibles, et ainsi économiser des ressources (ex. : CPU, mémoire vive). Nous avons développé deux modules pour identifier les requêtes sensibles. En déployant ces modules sur des mécanismes de protection existants, nous avons établi qu'ils permettent d'améliorer considérablement leurs performances.