Thèse soutenue

FR
Auteur / Autrice : Lei Jiang
Direction : Richard PerkinsPietro SalizzoniMathieu Creyssels
Type : Thèse de doctorat
Discipline(s) : Mécanique des fluides
Date : Soutenance le 23/11/2017
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : Ecole doctorale Mécanique, Energétique, Génie Civil, Acoustique (Villeurbanne ; 2011-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : École Centrale de Lyon (1857-....)
Laboratoire : Laboratoire de mécanique des fluides et acoustique (Rhône)
Jury : Président / Présidente : Jean-Pierre Garo
Examinateurs / Examinatrices : Richard Perkins, Pietro Salizzoni, Mathieu Creyssels, Elisabeth Blanchard
Rapporteurs / Rapporteuses : Jean-Pierre Garo, Vittorio Verda

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Cette thèse a pour objectif la caractérisation de la vitesse de ventilation critique dans un tunnel ventilé longitudinalement lorsque survient un incendie. La vitesse critique est définie comme la vitesse de ventilation minimale pour laquelle l’ensemble des fumées nocives est repoussé à l’aval de l’incendie. Les méthodes utilisées sont théoriques, expérimentales et numériques. Dans une première approche, l’incendie est modélisé par un rejet de fluide plus léger que l’air ambiant. Dans les expériences, il s’agit soit de l’air chaud, soit d’un mélange d’air et d’hélium ce qui permet d’étudier les effets dits non-Boussinesq, c’est à dire induits par une large différence de densité entre le rejet flottant et l’air ambiant. Une modélisation théorique simple est également donnée afin d’expliquer les variations de la vitesse de ventilation critique en fonction des conditions à la source du rejet (flux de flottabilité et géométrie). Un bon accord est observé entre les résultats expérimentaux et le modèle théorique aussi bien pour les rejets dits forces (jets) que pour les rejets dits flottants (panaches). Des simulations numériques ont été également menées afin de fournir une comparaison quantitative des vitesses critiques obtenues dans le cas d’un incendie modélisé par un panache et le cas d’un feu. L’apparition d’une vitesse dite ’super-critique’ observée dans la littérature dans le cas de feux a été étudiée. L’effet sur la vitesse critique d’un feu de puissance faible peut très largement être modélisé par l’effet d’un rejet de fluide léger au sol. En revanche, un feu de forte puissance nécessite une modélisation des flammes et donc de puissance thermique produite en volume dans une partie non négligeable du tunnel. La présence de flammes représente donc une source distribuée de flux de flottabilité au-dessus et en aval du lieu d’injection des gaz de combustion. En conséquence, dans cette situation, le foyer ne peut être modélisé par une simple condition aux limites au sol du tunnel. L’effet sur la vitesse critique d’une éventuelle inclinaison ou pente du tunnel a été également étudié. Une inclinaison du tunnel dans le sens de la ventilation induit une diminution de la vitesse critique par rapport à un tunnel horizontal alors que pour une inclinaison en sens contraire la vitesse critique est augmentée. Cependant, cet effet dépend des conditions à la source du rejet. Pour les rejets flottants, l’effet de la pente du tunnel est important tandis que la vitesse critique devient de moins en moins dépendante de la pente au fur et à mesure que le rejet devient force. Le modèle théorique développé pour un rejet dans un tunnel horizontal a été adapté au cas avec pente et un bon accord a de nouveau été établi entre les résultats expérimentaux et le modèle théorique. Enfin, pour un feu, les simulations numériques ont montré que la pente influence très peu la vitesse critique. Dans une dernière partie, l’effet de la présence de véhicules dans le tunnel a été investigue aussi bien expérimentalement qu’avec l’outil numérique. Les véhicules sont modélisés par des blocs parallélépipédiques de différentes tailles places en amont de la source de flottabilité ou le feu. Il a été montré que seul le bloc proche de la source modifiait la valeur de la vitesse de ventilation critique alors que les blocs plus éloignés avaient une influence négligeable. De même, la vitesse critique obtenue en présence de blocs se rapproche très rapidement de celle obtenue pour un tunnel sans véhicule lorsque la distance entre la source et le bloc le plus proche augmente. Le paramètre qui influence le plus la vitesse critique est la position relative du bloc et de la source. Lorsque le bloc protège directement la source en étant placé à son côté aussi bien longitudinalement que latéralement, l’air frais de la ventilation n’impacte pas directement le rejet et la vitesse critique est augmentée par rapport à la situation sans bloc. [...]