
N° d’ordre : 2017LYSEC19

THESE 

présentée pour obtenir le titre de DOCTEUR de 

L’ECOLE CENTRALE DE LYON 

Spécialité: Acoustique 

École Doctorale:  Mécanique, Énergétique, Génie civile et Acoustique 

Par Ahmed KESSENTINI 

APPROCHE  NUMERIQUE  POUR  LE  CALCUL  DE LA 
MATRICE  DE  DIFFUSION  ACOUSTIQUE:  

APPLICATION  POUR  LES  CAS  CONVECTIFS  ET 
NON  CONVECTIFS. 

A  NUMERICAL  APPROACH  FOR  THE  
CALCULATION  OF  THE  ACOUSTICAL SCATTERING 

MATRIX:  APPLICATION  FOR  THE CONVECTIVE  
AND  THE  NON  CONVECTIVE CASES  

Soutenue le 1 Juillet 2017 devant la commission d’Examen composée de : 

Président 
Rapporteur 
Rapporteur 
Membre
Membre
Directeur de thèse 
Directeur de thèse
Directeur  de thèse

 
 

M. C. KARRA
M. N. BOUHADDI
M. N. GMATI
M. J-L. DION
M. F. CHAARI
M. M. ICHCHOU
M. M. TAKTAK
M. O. BAREILLE

Professeur, U2MP- ENIS 
Professeur, FEMTO-ST-UBFC 
Professeur, LAMSIN-ENIT 
Professeur, LISMA-SUPMECA
Professeur, U2MP-ENIS
Professeur, LTDS-ECL
Maître 

 
de  Conférences,  U2MP-ENIS 

Maître 
 

de Conférences,  LTDS-ECL

Laboratoire de Tribologie et Dynamique des Systèmes – UMR 5513 

Année 2017



Ecole Doctorale 
 Sciences et Technologies 

Thèse de DOCTORAT 

Génie Mécanique 

N° d’ordre: 301/16 

République Tunisienne 
Ministère de l’Enseignement Supérieur 

et de la Recherche Scientifique  

Université de Sfax 

École Nationale d’Ingénieurs de Sfax 

THESE 
Présentée à 

L’École Nationale d’Ingénieurs de Sfax 

En co-tutelle avec 

L’École Centrale de Lyon

En vue de l’obtention du 

DOCTORAT 

Dans la discipline Génie Mécanique 
Par

Ahmed KESSENTINI 

A numerical approach for the calculation of the 

acoustical scattering matrix: application for the 

convective and the non-convective cases 

Approche numérique pour le calcul de la matrice 

de diffusion acoustique: application pour les cas 

convectifs et non convectifs 

Soutenue le 1er Juillet 2017, devant le jury composé de : 

M. Chafik KARRA

M. Noureddine BOUHADDI

M. Nabil GMATI

M. Jean-Luc DION

M.        Fakher CHAARI

M. Mohamed ICHCHOU

M. Mohamed TAKTAK

M. Olivier BAREILLE

M. Mohamed Amine BEN SOUF

     Président  

Rapporteur 

Rapporteur

 Membre

Membre 

Directeur de Thèse  

Directeur de Thèse      

Co-encadrant 

Co-encadrant 



Remerciements

Alors que les parties qui suivent sont l’aboutissement d’un peu plus que trois ans de travail
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Résumé

Cette thèse s’intéresse à l’étude de la propagation acoustique en guides d’ondes. La méthode

”Wave Finite Element” (WFEM) est d’abord appliquée à la propagation des ondes acous-

tiques dans des conduits périodiques rigides. Etant modélisés seulement en cellule typique

de taille réduite, la théorie des milieux périodiques conduit ensuite à un problème dont les

solutions sont extraites pour une section de guide d’ondes, pouvant être ensuite calculées

dans tout le milieu en utilisant ces cellules répétitives. Puis, des conduits avec des disconti-

nuités d’impédance acoustique sont étudiés. Une modélisation par Eléments Finis est utilisée

pour ces parties traitées acoustiquement et la matrice de diffusion est calculée. Différentes

configurations sont étudiées, et le comportement et la performance en terme d’atténuation

acoustique de ces traitements sont discutés. Les réponses forcées des conduits à des condi-

tions aux limites imposées sont également calculées et comparées aux solutions fournies par

la méthode Eléments Finis conventionnelle. La propagation acoustique dans les applications

industrielles, néanmoins, s’accompagne souvent par un écoulement de fluide. L’étude est

alors étendue au cas de la propagation acoustique libre en présence d’écoulement moyen uni-

forme. Une reformulation est donc issue de l’équation de Helmholtz convectée et développée

pour le calcul de la diffusion. L’effet de l’écoulement est enfin examiné.

Mots clés: Propagation acoustique guidée, Conduit, Matrice de diffusion, Wave Finite

Element.
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Abstract

This thesis deals with the study of the guided acoustical propagation. The Wave Finite

Element method (WFEM) is first applied to the propagation of acoustic waves in rigid peri-

odic ducts. Only a typical cell of reduced size being modelled, the theory of periodic media

then leads to a problem whose solutions are extracted for a waveguide section, and can then

be computed throughout the medium using these repetitive cells. Then, ducts with acoustic

impedance discontinuities are studied. Finite element modelling is used for these acoustically

lined parts and the scattering matrix is calculated. Different configurations are studied, and

the behaviour and performance in terms of acoustic attenuation of these liners are discussed.

The forced responses of ducts submitted to imposed boundary conditions are also calculated

and compared to the solutions provided by the conventional Finite Element method. The

acoustical propagation in industrial applications, however, is often accompanied by a flow.

The study is therefore extended to the case of free acoustical propagation in the presence

of uniform mean flow. A reformulation is derived from the convected Helmholtz equation

and further developed for the calculation of the scattering. The effect of the flow is finally

examined.

Keywords: Guided acoustical propagation, Duct, Scattering matrix, Wave Finite Ele-

ment.
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Introduction

Duct acoustics has been a widely investigated research topic, as it has various engineering

applications such as aircraft engines, compressors, and ventilation systems. Acoustic liners

are the most used techniques to attenuate sound levels in duct systems. Aero-structures,

such as an aircraft nacelle, are made of honeycombs and designed to be environmentally

friendly through a reduced engine noise. In other engineering applications, porous liners

are preferred since their performance is less frequency dependent. Whether honeycombs or

porous materials are used, these systems involve heterogeneous and multi-scaled media, and

therefore different behaviours of the acoustic waves propagation within these media. A lined

waveguide can be completely characterised by its scattering matrix. Therefore, it will be

worth finding ways to express this matrix taking into consideration the multi-modal aspect

of the guided acoustical propagation and almost realistic conditions.

The scattering matrix is considered as a characterisation of a waveguide element regardless

of the upstream and downstream conditions [9]. For instance, the scattering matrix was

calculated to study the scattering at elbow junctions of structural features through a semi-

analytical finite element (SAFE) method [10]. Kharrat et al. [11] studied the waves diffusion

due to defects in pipes. In other works, the scattering matrix of acoustical propagation

inside waveguides with impedance discontinuities was calculated [12, 13]. Some previous

works dealt with its measuring not only for the acoustical scattering due to passive elements

[14], but also hybrid cells [15]. The acoustical scattering matrix can be also computed for a

discontinuity of diameter using a mode matching approach (MMA) [16].

Several theoretical works focused on the study of the acoustical propagation and scattering

within ducts. For the axisymmetric cases, analytical approaches used a series expansion of

solutions that result from Helmholtz equation, and a projection over a basis of orthogonal
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functions for the rigid duct. Coupling of modes with same circumferential order is added for

the lined part. Vector of pressure projections obeys then a second-order differential equation.

A subsequent method for the computation of scattering matrix is detailed in [17, 12]. An

improvement of this method was later published [18]. These works studied sound propagation

in cylindrical ducts without mean flow. Auregan et al. [5] presented a ”multi-modal method”

to compute the scattering matrix of propagation in a 2D lined duct with flow , which aimed

to measure the liner impedance. Nevertheless, for 3D ducts of arbitrary cross section, it

is laborious to express solutions within a duct analytically. Numerical approaches were

alternatively proposed in literature [19, 13, 20]. These methods used the Finite Element

formulation, and results of the adopted numerical methods were compared to the analytical

results. However, Finite Element models get impractical for high frequencies causing an

insufficiency of accuracy, or CPU capacity and time related computing issues. Although the

Finite Element method was preferred, the scattering matrix was computed for a frequency

range such as only uncoupled modes are cut-on. Experimental procedures for the multi-

modal measuring of the acoustical scattering matrix using a pressure source composed of the

cut-on modes were detailed in [21, 22, 4]. Five cut-on modes allowed the determination of a

(10× 10) scattering matrix. A comparison with theoretical results was also included.

When a waveguide is periodic, assuming that it is uniform following the waves propagation

direction, a FE based approach can be used for an elementary modelling. This is the Wave

Finite Element method, commonly referred to as the WFE method, and it will be mainly

used in this thesis. The WFE method has many potential advantages compared to the above

mentioned approaches. A significantly lower computing cost makes it a powerful alternative

to the conventional FE method. The method remains efficient up to high frequencies, that is,

study of high order modes is possible. Indeed, a FE model with a small size is involved. Mass

and stiffness matrices, typically extracted using commercial FE tools, are then post-processed

using the periodicity conditions to obtain an eigenvalue problem. The eigenvalues are divided

into two sets corresponding to forward and backward going waves and the wavenumbers and

wave modes are provided. Moreover, this method can be extended to the multi-layers [23] and

the two dimensional propagation [24]. The WFE method for two dimensional structures was

studied in [25]. Manconi and Mace [26] used the WFE method to analyse wave propagation
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in axisymmetric structures. Renno and Mace [27] calculated the forced response of two

dimensional homogeneous media through the WFE approach. The method does not have

limitations for the type of element used for modelling. However, it may be prone to ill-

conditioning issues. In fact, the cross-sectional mesh density can be increased to add high

order modes to the wave basis, but time consuming matrix inversions and ill-conditioned

matrices must be handled while raising the degrees of freedom number. For example, some

authors kept only a reduced wave basis while computing the forced response [28]. Numerical

issues were discussed and some solutions were provided in [29, 23]. The scattering matrix

computation procedure is actually a hybrid WFE/FE method. The conventional FE method

is used for the lined part of the duct while the WFE method is used for the rigid duct

parts. The continuity conditions at the right and the left edges of the coupling element

corresponding to the lined duct part are then exploited.

This thesis proposes a numerical approach to calculate the acoustical scattering within

periodic lined ducts, with and without mean flow, with very few restricting hypotheses. The

thesis includes four chapters:

In chapter 1, the literature is reviewed. Theory of acoustic duct modes is summarised. The

conventional methods principles are briefly presented. Methods are compared and limitations

are discussed.

In chapter 2, The WFE method formulation is presented. The scattering matrix com-

putation method is detailed. Then, the computation procedure of the forced response of

both single and coupled periodic waveguides is given. The chapter is ended by numerical

validation of some typical examples. The scattering matrix calculated by the WFE method

is compared to results of the analytical method, and the forced response is validated by the

FE method [30].

Chapter 3 is devoted to advanced modelling of the lined duct parts. Two liner configura-

tions are dealt with. The scattering due to locally reacting lining is first studied. Calculation

of the equivalent surface impedance of the interface is used in this case. Then, scattering

due to bulk reacting liners is considered. Three dimensional modelling of the lining is rather

preferred. The response of rigid and lined waveguides submitted to prescribed boundary

conditions (e.g. pressures or velocity excitations, anechoic or partially reflective ends, PML
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layers ...) can be calculated. Results are always compared to conventional methods.

In chapter 4, the convective propagation case is considered. For the standard case of a

uniform medium without flow, modes are related to the eigensolutions of Laplace operator

. For a medium with mean flow, the details become more complicated, but the concept of

duct modes remains the same. Results are then discussed and concluding remarks are finally

given.
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Chapter 1

Bibliographic survey

1.1 Introduction

Several methods, including analytical and numerical ones, have been used in literature for the

study of the acoustical propagation inside waveguides. Acoustical waveguides were charac-

terised in different ways such as calculating the transfer matrix [31, 32], the mobility matrix

[33], the reflection matrix [34, 21], the transmission matrix [21] and the determination of

the scattering matrix either theoretically [12, 13] or experimentally [20, 22]. Particularly,

the scattering matrix provides a full multi-modal description of transmission, reflection and

conversion between the modes. Moreover, it is an intrinsic characterisation of waveguides

which does not depend on the upstream and downstream conditions.

This chapter is organised as following: Theoretical bases of duct acoustics are reviewed

in the first part. An application of noise reduction by absorbing materials is illustrated.

Then, the main methods dealt with in literature for the study of the guided acoustical

propagation and the calculation of the scattering matrix are summarised. The chapter is

ended by presenting the Wave Finite Element Method through a comparison with the other

approaches.
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1.2 Theoretical bases

1.2.1 Conservation equations

Let us suppose that perturbations are small and equations are linear in the acoustic quantities.

The fluid is assumed to be homogeneous, non-viscous and thermally non-conductive. The

propagation equation of the acoustic pressure is the result of a system of three fundamental

equations governing the fluctuation of the fluid density ρ, the acoustic velocity v and the

acoustic pressure p.

Equation of mass conservation and equation of momentum conservation are given respectively

by:
∂ρ

∂t
+ ρ0div(v) = 0 (1.1)

ρ0
∂v

∂t
+ ∇p = 0 (1.2)

The state equation is:

p = ρc2 (1.3)

where c is the celerity of the sound in the fluid and ρ0 is the density of the fluid.

1.2.2 Acoustic impedance

The complexity of the aeroacoustic phenomena in the surface of a liner makes the definition

of a macroscopic quantity describing the effects of absorption necessary. The presence of an

absorbent material can be taken into account as boundary conditions in guided propagation

equations. We define:

− Acoustic impedance: the ratio of the pressure to the velocity normal to the material.

− Characteristic acoustic impedance: the acoustic impedance in the free field given by ρ0c.

− Normalised acoustic impedance: a dimensionless quantity that normalises the acoustic

impedance to the characteristic acoustic impedance of the air.

− Acoustic admittance: the inverse of the acoustic impedance.

It should be noted that the acoustic impedance is frequency dependent. Although the
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impedance depends also on spatial coordinates, a homogenised acoustic impedance which

represents the whole material is usually considered. Furthermore, it was shown that an

acoustic impedance depends on fluid flow characteristics too [35].

The real part of the impedance is called resistance. The resistance of a passive material

is necessarily positive. The imaginary part is called reactance. Three particular values of

the acoustic impedance have special meanings: if the impedance is infinite, then the normal

velocity is zero which corresponds to a rigid wall. If the impedance is equal to zero, then it

corresponds to the soft wall condition. If the impedance is equal to ρ0c, it corresponds to

the transparent boundary condition (no reflection condition) under normal incidence.

Several methods, including theoretical and experimental ones, were used in literature for

the eduction of the acoustic impedance of absorbers under different propagation conditions

[36, 37, 38, 39, 6, 40] .

1.2.3 Acoustic field inside ducts

Let us consider a hard-walled duct of arbitrary cross section with a uniform medium without

mean flow. Consider the two-dimensional cross-sectional area A of the duct and the outward

unit normal to the wall nR. The duct D is defined:

D = {(x, y, z)|(y, z) ∈ A} (1.4)

The acoustic field satisfies in the duct the Helmholtz equation for harmonic time dependence:

∇2p+
ω2

c2
p = 0 (1.5)

where c is the celerity of the sound in the fluid and ω is the angular frequency.

The hard wall boundary condition can be written as:

vnR = 0 (1.6)

where v is the velocity and nR is the normal to the rigid wall.

Solutions of Eq. (1.5) are of the form p(x, y, z) = X(x)ψ(y, z) with X(x) = e−ikxx. Functions
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ψ associated to particular values of kx are determined up to a multiplicative factor. When

the exponential term is dropped, we get:

∇2
yzψ + (

ω2

c2
− k2

x)ψ = 0 (1.7)

where ∇2
yz denotes the Laplacian ∇2 in y and z. As ψ is a function of y and z, it is same to

replace by ∇2 instead. The general solutions are therefore:

p(x, y, z) =
∞∑
j=0

Ajψj(y, z)e
−ikxjx (1.8)

where ψj are the eigenfunctions of Laplace operator reduced to A, which, for (y, z) ∈ A, are

solutions of

−∇2ψ = α2ψ (1.9)

and α is the transversal wavenumber.

The axial wavenumbers kxj are given by one of the square roots (+ for right running waves

and − for left running waves)

k+−
xj = ±

√
ω2

c2
− α2

j (1.10)

Each term in the series expansion is called a duct mode. If ω/c > αj, the jth mode is cut-

on. If ω/c = αj, the jth mode is at resonance and the axial wave length is infinite (Fig.

1.1). If ω/c < αj, the jth mode is cut-off (exponentially decaying). In a rectangular duct,

ψ(y, z) = f(y)g(z) : The eigensolutions consist of combinations of trigonometric functions.

In a circular duct in polar coordinates (r,θ), ψ(y, z) = f(θ)g(r). These eigensolutions consist

of exponentials in θ and Bessel functions [41] in r. For ellipses, explicit solutions can be also

expressed, but only in special cases such as with hard walls. The eigensolutions consist of

Mathieu functions [41]. For other geometries, numerical methods have to be used for the

eigenvalue problem.

For (y, z) belonging to the duct wall, we have:

∇ψnR = 0 (1.11)
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where nR represents the normal to the rigid wall.

The use of Green’s theorem, Eq.(1.9) and Eq.(1.11) leads to:

for i 6= j:

∫ ∫
A

[
ψi(∇2ψj + α2

jψj)− ψj(∇2ψi + α2
iψi)

]
dS = (α2

j − α2
i )

∫ ∫
A
ψjψidS = 0 (1.12)

for i = j,

∫ ∫
A

[
ψj∇2ψj + α2

jψ
2
j

]
dS = α2

j

∫ ∫
A
ψ2
jdS −

∫ ∫
A
|∇ψj|2dS = 0 (1.13)

Any αj 6= 0 is an eigenvalue only if

∫ ∫
A
ψ2
jdS 6= 0. If αj = 0, then ψ0 = 1 and

∫ ∫
A
ψ2

0dS =

|A| 6= 0.

The orthogonality of {ψj} has been shown from Eq. (1.12) and Eq. (1.13). That is to say:

∫ ∫
A
ψiψjdS =

 = 0 if i 6= j

6= 0 if i = j
(1.14)

It is noted that the above solutions only need a minor adaptation to include a uniform mean

flow inside the duct.

Figure 1.1. Pressure’s real part contours: Axial patterns for (a)large axial wavenumber
(b)small axial wavenumber (c)zero axial wavenumber (d)imaginary axial wavenumber.
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• Rectangular cross-section

Figure 1.2. Waveguide with a rectangular cross-section (problem set in the xy-plane).

The resolution of the Helmholtz equation here is only detailed in 2D since resolution for

the third dimension can be done by analogy to the transversal dimension. Thus, a two-

dimensional problem, set in the xy-plane, where the x- (resp., y-) axis is parallel (resp.,

normal) to the walls of the duct is considered (Fig. 1.2). The separation of variables p =

X(x)Y (y) is used for the resolution of Eq. (1.5). We obtain:

Y (y)
d2X(x)

dx2
+X(x)

d2Y (y)

dy2
+
ω2

c2
X(x)Y (y) = 0 (1.15)

Dividing by X(x)Y (y) yields to:

1

X(x)

d2X(x)

dx2
+

1

Y (y)

d2Y (y)

dy2
+
ω2

c2
= 0 (1.16)

The first term is only dependent on x and the second term depends only on y. Hence, we

can write:
d2X(x)

dx2
+ k2

xX(x) = 0 (1.17)

Solutions of X(x) are:

Xj(x) = e∓ikjx (1.18)

kj is the jth axial wavenumber.

Solutions Yj(y) verify:
1

Yj(y)

d2Yj(y)

dy2
+ k2 − k2

j = 0 (1.19)
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where k = ω/c.

From the boundary condition,
∂p

∂y
|y=0 = 0 (1.20)

we get:

Yj(y) = C1 cos(αjy) (1.21)

where αj =
√
k2 − k2

j (dispersion relation). The other boundary condition at y = h, where

h is the dimension of the duct D following y,:

∂p

∂y
|y=h = 0 (1.22)

gives:

C1 sin
(√

k2 − k2
jh
)

= 0,√
k2 − k2

jh = jπ,√
k2 − k2

j =
jπ

h

(1.23)

The coefficient C1 can be determined by normalisation of modes ψj = Yj.

∫ h

0

ψjψjdy =

∫ h

0

C2
1 cos2

jπ
h
y

 dy =

∫ h

0

1

2
C2

1 +
1

2
C2

1cos

2jπ

h
y

 dy =

C2
1

1

2
y +

h

4jπ
sin

2jπ

h
y

h
0

=
1

2
hC2

1 = 1

(1.24)

Hence, C1 =
√

2/h for j 6= 0 and C1 =
√

1/h for j = 0. Finally, expression of the pressure

inside the duct is given by:

pj(x, y, t) =



√
1

h
ei(∓kx−ωt) if j = 0√

2

h
cos

jπ
h
y

 ei(∓kjx−ωt) if j 6= 0

(1.25)
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Figure 1.3. Mode shapes in a rigid channel.

The phase velocity is defined such as:

cph =
w

kj
=

c√
1− π2j2

c2

h2ω2

(1.26)

and the group velocity is given by:

cg =
dω

dkj
= c

√√√√
1− π2j2

c2

h2ω2
(1.27)

The duct is now assumed to be lined at y = h. This leads to write:

∇2p+ k2p = 0 if y ∈]0, h[ (1.28)

∂p

∂y
= 0 if y = 0 (1.29)

∂p

∂y
=

iωρ0

Z
p if y = h (1.30)
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where Z is the impedance of the lined wall.

The transversal wavenumbers in this case, say βj, must satisfy the boundary condition at

y = h given by (1.30). Eqs. (1.28) and (1.29) allow expressing solutions Yj(y) as C1 cos(βjy).

Thus, βj are given by:

−βj tan(βjh) =
iωρ0

Z
(1.31)

Solutions of (1.31) can be found by the Newton–Raphson method. It is an iterative method

which requires an initial guess. It is easy to see that an initial guess can not be equal

to (2j + 1)π/(2h) since the function must be differentiable at each point of the iteration.

Propagation constants are then calculated by the dispersion relation [42].

• Circular cross-section

Figure 1.4. Cylindrical duct.

In cylindrical coordinates, the Laplacien is given by:

∇2 =
d2

dr2
+

1

r

d

dr
+

1

r2

d2

dθ2
+

d2

dx2
(1.32)

The pressure distribution inside the duct D is x-, r- and θ- dependent (Fig. 1.4). Assum-

ing a time harmonic dependence and using the separation of variables p = X(x)R(r)Θ(θ),
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Helmholtz equation (1.5) in cylindrical coordinates is:

XΘ

(
d2R

dr2
+

1

r

dR

dr

)
+XR

1

r2

d2Θ

dθ2
+RΘ

d2X

dx2
+ k2XRΘ = 0 (1.33)

Multiplying Eq. (1.33) by r2/(XRΘ) gives:

− 1

Θ

d2Θ

dθ2
=
r2

R

(
d2R

dr2
+

1

r

dR

dr

)
+ r2

(
1

X

d2X

dx2
+ k2

)
= m2 (1.34)

m is an integer and stands for the circumferential mode order.

Multiplying Eq. (1.33) by r2/(XΘ) yields to:

r2 d2R

dr2
+ r

dR

dr
+

((
1

X

d2X

dx2
+ k2

)
r2 −m2

)
R = 0 (1.35)

Physical solutions of R are the Bessel functions of first kind. For each circumferential order

m, the transversal wavenumbers αmi must satisfy the boundary condition:

J
′

m(αmia) = 0 (1.36)

where a is the radius of the duct D, and J
′
m denotes the derivative of the mth order Bessel

function of first kind.

αmi =
χmi
a

(1.37)

where χmi is the ith root of J
′
m.

The associated solutions of Helmholtz equation Jm(αmir)e
i(∓kmix−mθ−ωt) are the duct modes.

The solution of Helmholtz equation (1.5) can be written as following:

p(x, r, θ, t) =
+∞∑

m=−∞

+∞∑
i=0

Amie
i(±kmix)Jm(χmir/a)ei(−mθ−ωt) (1.38)

Only the plane wave mode propagates for frequencies below the cut-off frequency of the first

higher order mode:
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f < 1.84
c

2πa
(1.39)

Pressure is constant in every cross-sectional area of the duct for these frequencies. Above

the cut-off frequency given by (1.39) , the pressure distribution in a given section of the duct

will not be uniform [43]. Generally, a mode is propagative or evanescent (exponentially de-

caying) depending on the frequency being higher or lower than the cut-off frequency. Cut-off

frequencies of higher order modes are calculated in a similar way as Eq. (1.39) replacing

coefficient 1.84 by the corresponding Bessel function derivative’s zero.

HHH
HHHi
m

0 1 2 3 4 5

0 0 1.8412 3.0542 4.2012 5.3176 6.4156
1 3.8317 5.3314 6.7061 8.0152 9.2824 10.5199
2 7.0156 8.5363 9.9695 11.3459 12.6819 13.9872
3 10.1735 11.7060 13.1704 14.5858 15.9641 17.3128
4 13.3237 14.8636 16.3475 17.7888 19.1960 20.5755

Table 1.1. Zeros of J ′m.

Modes with a circumferential order m = 0 are called symmetric (No dependency on θ). For

these modes, the acoustic field is symmetric over the axis of revolution.

When the wall of the duct is lined, for each circumferential order m, the transversal wavenum-

bers βmi are determined such as the boundary condition at r = a is satisfied [44]

Jm(βmia)

βmiJ
′
m(βmia)

=
iZ

ρ0ω
(1.40)

where ρ0 is the density of the fluid and Z is the wall impedance.

For a hard boundary condition (Z = ∞), βmi = αmi (Eq. (1.36)). For a soft boundary

condition (Z = 0), βmi are simply given by the zeros of the Bessel function.
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• Annular duct

Figure 1.5. Annular duct.

For an annular duct, angular and axial dependencies are determined similarly as for a circular

duct section. However, while R is only dependent on Bessel function of first kind for a

cylindrical duct, R is given for an annular duct as:

R(r) = AmiJm(αmir) +BmiYm(αmir) (1.41)

where Jm and Ym are the mth order Bessel functions of first kind and second kind respectively

[45]. For a cylindrical duct, Bmi are necessarily zeros as Ymdiverge at r = 0. Ami and Bmi

are given by the boundary conditions, and for a rigid duct are of the form:

Ami = cos(τmi) (1.42)

Bmi = sin(τmi) (1.43)

with

τmi = arctan

(
− J

′
m(αmiaouter)

Y ′m(αmiaouter)

)
(1.44)

where aouter is the outer radius of the duct (Fig. 1.5).
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1.3 Passive noise reduction

Reduction of sound levels of aircraft engines has been one of the important engineering

challenges. Sources of noise are multiple: fan, turbine, compressor and jet noise (Fig. 1.6).

Sound propagation in a duct of large transversal dimensions induces the presence of many

propagating high modes, and their superposition is the origin of the complexity of noise in

the aircraft engines. Lining at the wall of the nacelle is used to attenuate the noise. It con-

sists of SDOF and DDOF thin resistive sheets and honeycombs [2] (Fig. 1.7). In a turbojet

nacelle, acoustic treatments are submitted to high acoustic pressure levels (up to 160 dB) and

important flows (Mach numbers up to 0.6) [46]. The lined waveguide can be characterised

by its scattering matrix.

Figure 1.6. Illustration of aircraft engine’s principal sources of noises [1].
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Figure 1.7. Types of liners used in an aircraft engine [2].

1.4 Scattering matrix definition

Absorbing materials are represented by their acoustic impedance. A homogenised impedance

which represents the whole material is used. Scattering due to impedance discontinuities of

lined parts will be studied (See Fig. 1.8).

The scattering matrix is a (2n × 2n) matrix such as it relates the 2n reflected (output)

modal pressure amplitudes at the left and right sides of a duct element Qref
wg1

and Qref
wg2

to the

2n incident (input) modal pressure amplitudes at the left and right sides Qinc
wg1

and Qinc
wg2

.

 Qref
wg1

Qref
wg2

 = C

 Qinc
wg1

Qinc
wg2

 (1.45)

where square blocks of C are such as C =

 C11 C12

C21 C22
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• C11 corresponds to reflection of the waves entering the element from the left side

• C21 corresponds to transmission of the waves entering the element from the left side

• C12 corresponds to transmission of the waves entering the element from the right side

• C22 corresponds to reflection of the waves entering the element from the right side

Figure 1.8. Illustration of an acoustical scattering problem and description of wave propa-
gation behaviours due to lining on the duct’s walls (to be studied later on in the manuscript).

It is worth noting that a same square block may stand for a transmission or reflection matrix

depending on how the vectors of modal pressure amplitudes were arranged. Several works

aimed to compute the multi-modal scattering matrix. Others dealt with some experimental

facilities to measure it. These methods are summarised hereafter.

1.5 Review of the theoretical methods of the scattering

matrix calculation

1.5.1 Analytical Method (MMPM)

Bi et al. [12, 17] presented an analytical technique to calculate the scattering matrix. The

proposed method was called ”Multi-Modal Propagation Method” (MMPM), and applied to
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cylindrical ducts. Here is the principle of the method. The Euler and continuity equations are

projected over the eigenfunctions of rigid duct. As a result of the local impedance boundary

condition, a second order differential equation of the form P
′′

+ AP = 0 relating the vector

P composed by the pressure projections over these eigenfunctions and its second derivative

(with respect to the spatial coordinate) is then written. The matrix A is the sum of two

terms: the first diagonal term comes from using the rigid duct basis functions. Rigid duct

modes do not obey the wall boundary conditions, and so a second coupling term Γ, which

can be considered as the expression of scattering effects due to the liner, is added.

A = (K2I− L2) + Γ (1.46)

with K is the dimensionless wavenumber, I is the identity matrix, L is a diagonal matrix

with the transversal wavenumbers αj on the diagonal, and coefficients of the matrix Γ, which

represent the coupling between modes (m, i) and (m
′
, i
′
), are given by:

Γmi,m′ i′ =
− 1

π

√√√√√
1−

m2

α2
mi

1−
m
′2

α2
m′ i′


∫ 2π

0

iK

Z̄
e
−i
(
m
′−m

)
θ

dθ (1.47)

where m and i are the circumferential and radial mode orders respectively, and Z̄ is the

complex conjugate of the normalised impedance of the liner. It is easy to see from Eq. (1.47)

that only modes with same circumferential orders are coupled. Eigenvalues square roots of

matrix A are the axial wavenumbers inside the lined duct part. The continuity conditions at

interfaces rigid-lined parts are then applied. A subsequent procedure for the calculation of

the scattering matrix is detailed in [12]. The scattering matrix blocs are then given in terms

of the eigenvalues and eigenvectors of matrix A with truncation at a sufficient number of

modes. For further details, the reader may refer to [17, 12]. The scattering of a segmented

liner can be calculated using a cascade of scatterers as in [47]. The convergence of the method

was discussed in [12, 18]. This method is used later on in this thesis to validate results of

the WFE method. However, for arbitrary cross-sections, analytical solutions are not obvious.
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Therefore, Finite Element based methods are alternatively used.

1.5.2 Finite Element Method (FEM)

Taktak et al. [13] used a Finite Element method to compute the scattering matrix. The stud-

ied duct element does not represent a change in the cross section, but in the wall impedance.

Moreover, the duct is assumed to be cylindrical and the impedance of the liner is locally

reacting. The weak variational formulation is written:

Π = −
∫

Ω

∇q∇pdv + k2

∫
Ω

qpdv +

∫
∪Γi

q
∂p

∂ni
dS = 0 (1.48)

Ω denotes the acoustic domain inside the duct element. Γi are the boundaries of the duct

element, ni are the outward normal to Γi, p is the acoustic pressure, q is a test function and

k is the wavenumber. Later on , in chapter 4, the convected formulation of the problem will

be used to calculate the mass, stiffness and damping matrices.

The acoustic pressure in the duct is the solution of the system composed of Helmholtz

equation and boundary conditions of the rigid and the lined parts:


∇2p+ k2p = 0 in Ω (1.49)

∂p

∂nR
= 0 on ΓR (1.50)

Z
∂p

∂nL
= iωρ0p on ΓL (1.51)

where k is the free field wavenumber, nR and nL are the outward normals to the rigid and

lined parts respectively, Z is the impedance of the liner, ρ0 is the density of the fluid, ω is

the angular frequency and i is the complex number such as i2 = −1.

The third integral term of the weak variational formulation is calculated per circumferential

order and for each boundary. Solution of Eq. (1.49) is used for the left and right edges of

the duct element. Eq. (1.50) and Eq. (1.51) are used for the rigid and lined boundaries

respectively. The domain Ω is meshed with finite elements, and the Eq. (1.48) leads finally
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to a system of the following form:
H1p + H2

 Qinc
wg1

Qinc
wg2

+ H3

 Qref
wg1

Qref
wg2

 = 0

H4p + H5

 Qinc
wg1

Qinc
wg2

+ H6

 Qref
wg1

Qref
wg2

 = 0

(1.52)

where p is the vector of nodal pressures.

The system is then rearranged in order to express the relation between left running and right

running modal pressures on the left and right boundaries of the duct element. A loop along

with the circumferential orders must be then performed to have the total scattering matrix.

1.5.3 Boundary Element Method (BEM)

An integral equation can be derived from the Helmholtz equation by applying the Green’s

theorem. The integral equation is of the form [48, 49]:

∫
S

∂G

∂n
(P ,Q)p(Q)dS +

1

2
p(Q) =

∫
S

G(P ,Q)
∂p

∂n
dS (1.53)

The function G is a Green’s function. Physically, G(P ,Q) represents the effect observed at

a point P of a unit source at the point Q.
∂

∂n
represents the partial derivative with respect

to the unit outward normal at the point Q on the boundary. G is defined as follows:

G(P ,Q) =
i

4
H

(1)
0 (kr) in two dimensions

G(P ,Q) =
1

4π

eikr

r
in three dimensions

(1.54)

where r = |r|, r = Q−P . The function H
(1)
0 is the spherical Hankel function of the first kind

of order zero.
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Figure 1.9. Illustration of modelling by the FEM and BEM approaches [3].

The main advantage of the BEM is that only the boundary has to be modelled in order

to obtain a solution. Unlike the FEM, no discretisation of the interior region is required (Fig.

1.9). However, the method is still limited to low frequencies applications.

1.5.4 Spectral Finite Element Method (SFEM)

The Spectral Finite Element Method is based on a variational formulation for non-conservative

motion in the frequency domain [50]. The studied duct region is decomposed into rectangu-

lar elements. Acoustic propagation through the inhomogeneous waveguide Ω =
⋃

Ωi with

various geometries, linings, and fluid properties can be investigated (Fig. 1.10).

Figure 1.10. Schematic of the computation regions inside the duct.
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The weak variational formulation is given by:

LΩ(p, p̄) =

∫
Ω

 1

ρω2
k2pp̄−

1

ρω2
∇p∇p̄

 dv +

∫
Γ

1

ρω2

ik

Z
pp̄dS (1.55)

p̄ denotes the conjugate of the sound pressure p in the adjoint system. Z is the normalised

impedance defined at Γ.

The approximate solution p may be represented by the expression:

p = Nt(y)W(x) (1.56)

where Ni are polynomial shape functions (N is the vector of shape functions) and Wi are the

spectral wave functions.

Integration of the variational form is performed by region.

LΩj
=

∫
(W̄j)

tK1Wjdx−
∫

(W̄j)
tK2Wjdx+

∫
(W̄j)

tK3Wjdx−
∫ dW̄j

dx

t

K4

dWj

dx
dx

(1.57)

with submatrices

K1 =
k2

ρω2

∫
NNtdy (1.58)

K2 =
1

ρω2

∫ dN

dy

dN

dy

t

dy (1.59)

K4 =
1

ρω2

∫
NNtdy (1.60)

and for a (q, r)th element,

Kq,r
3 =

ik

Zj,h

1

ρω2
δqneδrne +

ik

Zj,0

1

ρω2
δq1δr1 (1.61)

Zj,0 and Zj,h are the normalised impedances defined at lower (y = 0) and upper (y = h)

boundaries of the jth region respectively. δ is the Kronecker index. ne is the polynomial

interpolation order. The final forms of the matrices K1,..,K4 are constructed by a combination
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of their submatrices.

Letting

K0 = K1 −K2 + K3 (1.62)

a system of (ne × ne) second order ordinary differential equations for Wi(x) follows:

K4

d2W

dx2
+ K0W = 0 (1.63)

Solutions are expressed as follows:

W = CΦe−iµx (1.64)

where Φ is a vector representing the nodal and interior amplitudes, C is a constant and

eigenvalues µ come in pairs of eigenmodes with the same phase speed propagating in the

positive and negative axial directions. The dimension of the eigenvalue problem is (ne × ne)

and a finite 2ne number of eigenvalues are obtained. Within each region the pressure is given

by the combination of polynomials and wave functions as in Eq. (1.56).

1.6 Review of the experimental methods of the scat-

tering matrix calculation

Several experiments have been carried out to predict the scattering matrix [22, 4, 51, 52, 53].

Fig. 1.11 shows the experimental set up at the University of Technology of Compiegne.

The equipment is composed by a source, two measurement duct elements, a test duct element

and an anechoic termination. The experimental process, as presented by Sitel et al., is as

follows [22]: Considering n cut-on modes, the 2n scattering matrix coefficients are obtained

after repeating the experiment for n linearly independent pressure distributions for at least

two load configurations. The frequency spectra of the total modal coefficients in two closed

cross sections located in both measurement duct elements are collected, and the incident and

reflected modal pressure vectors are separated for each load and source configuration. Then,

the incident and reflected modal pressure vectors on both sides of the test duct element

for the n source configurations and two or several loads are post processed. The scattering
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matrix is finally computed.

Figure 1.11. Experimental set up of the scattering matrix measurement [4].

Similar experiments were performed at University of Maine for a rectangular cross section

configuration in presence of flow [5]. The experiment aimed to measure the wall impedance

by an inverse method through the calculation of the scattering matrix.

Figure 1.12. Schematic description of the experimental set-up. 1: Compressor, 2: Flowme-
ter, 3: Upstream anechoic termination, 4: Upstream source , 5: upstream microphones, 6:
Lined wall, 7: downstream microphones, 8: Downstream source, 9: Downstream anechoic
termination [5].
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The set-up includes a compressor generating the air flow, downstream and upstream

acoustic sources made of loudspeakers, and two anechoic terminations (See Fig. 1.12). Two

measurements are made in two different states of the system: switching on the upstream

source, the downstream source being switched off (first measurement), and then by switching

on the downstream source, the upstream source being switched off (second measurement).

Some other experiments dealt with the eduction of liners impedance. Eduction technique

matches between numerical simulations and acoustic measurements. Fig. 1.13 shows the

Aero-Thermo-Acoustic test bench of the French Aerospace Laboratory ONERA.

Figure 1.13. ONERA’s Aero-Thermo-Acoustic test bench in grazing configuration [6].

ONERA’s impedance eduction method is based on acoustic Laser Doppler Anemometry

(LDA) measurements and Discontinuous Galerkin (DG) simulations. Excitation is provided

by two loudspeakers installed in pressurised cabinets. Upstream of the test section, two

microphone probes are flush-mounted, which allow the measurement of the incident acoustic

plane waves amplitude. A Laser Doppler Velocimeter allows the measurement of the velocity

components. The equipment is ended by an anechoic outlet.
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1.7 An introduction to the Wave Finite Element Method

(WFEM)

The Wave Finite Element approach has recently attracted many researchers for the study of

wave propagation either in one dimensional (Fig. 1.14) or two dimensional (Fig. 1.15) peri-

odic structures. The method combines a Finite Element elementary modelling and relations

provided by the periodicity condition.

Figure 1.14. Illustration of cells decomposition for the 1D WFE method.

Figure 1.15. Illustration of cells decomposition for the 2D WFE method [7].
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The principle of the method is as following: The periodic waveguide is divided into similar

cells following the direction of propagation. Once the eigensolutions are extracted for the

waveguide section, the state vectors can be determined for the whole waveguide using these

repeating cells and avoiding the costly approach of meshing the entire waveguide. A unit

cell is meshed using commercial FE packages and internal nodes are condensed onto the

cell’s edges. The Bloch theorem is applied to the cells composing the periodic waveguides.

A propagation constant µ, representing the change in the amplitude and the phase in the

propagation directions, relates the displacements on the cell edges, (eventually the cell corners

for 2D periodic structures [7, 54]).

qr = µ ql (1.65)

where q is the vector of displacements, and subscripts l and r stand for the left and right

edges of a cell.

The equilibrium of forces at the cell’s scale is also expressed as follows [55]:

µf l + f r = 0 (1.66)

where f is the vector of forces.

Finally, the method leads to an eigenvalue problem. Wavenumbers can be then calculated

through eigenvalues. If the waveguide is undamped, then the wavenumber is purely real or

purely imaginary, associated with a propagating or an evanescent wave respectively. If there

is damping, then the wavenumber is complex and the wave is an oscillating decaying wave.

Wave mode shapes are given by the eigenvectors. The method can be further applied to

identify the forced response regarding the boundary conditions.

The WFE method has been widely used in previous works for studying the wave propa-

gation in structures. It has been used for beam-like structures [56], laminates [57], fluid-filled

pipes [58, 59], tyres [60], rails [61], poroelastic media [62, 63] and damaged structures for

damage detection and sizing purposes [64, 65]. The method was not only applied to straight

waveguides but to curved ones also [64].

Numerical instabilities may arise when it comes to solve the so-called eigenproblem. Deal-
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ing with matrices singularities and choices of mesh density and cells length are important to

ensure a satisfying convergence of the method. Some authors proposed better conditioned

forms to the eigenvalue problem [66] so that numerical problems are avoided particularly

when the cross-section’s mesh involves a large number of degrees of freedom. Some au-

thors have later proposed significant improvements to the method allowing a reduction of

the computational cost [67, 68, 69]. Thus, the use of the method seems to be particularly

interesting as it represents an efficient alternative to the conventional FE method, regarding

its applicability to the mid and high frequencies ranges.

1.8 Bibliographic synthesis

Several methods dealing with duct acoustics have been presented in this chapter. Comparison

between methods is summarised in the following table:

Method Application Advantages Limits
to duct acoustics

MMPM [12] Exact solutions Restricted to
Scattering matrix simple geometries

FEM [13] Possible extension to Time consuming
Scattering matrix the complex for high

geometries modelling frequencies ranges
BEM [32] Only boundary of Time consuming

Transfer matrix the domain needs for high
to be discretised frequencies ranges

SFEM [50] Acoustic fields inside ducts Possible extension -Requiring
with impedance and geometry to modelling of ducts higher order

non-uniformities with irregular regions[50] polynomial interpolation
-Numerical issues

WFEM Lower computational Numerical issues
time (Solutions to be provided

later on in the manuscript)

Table 1.2. A summary on duct acoustics methods.

30



Bibliographic survey

1.9 Conclusion

The scattering matrix is an intrinsic characterisation of a waveguide element which does not

depend on the upstream and downstream conditions. It is only dependent on the acoustic

and geometric properties of the characterised element and provides a complete description

of the modal reflection, transmission and modes conversion.

This chapter has also led to a comparison of various methods dealing with the study of

the guided acoustical propagation and scattering of acoustic waves. It has been shown that

the use of the Wave Finite Element Method is mostly advantageous compared to methods

used in literature as it uses an elementary FE modelling and allows an efficient study for the

mid and high frequencies ranges. Nonetheless, it is noted that the method could be prone

to numerical issues and therefore some scaling strategies are yet to be proposed to avoid

erroneous results. The WFE formulation will be presented in details within the next chapter

and will be later applied to the acoustical guided propagation.
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Chapter 2

Wave Finite Element Method:

Theoretical background and numerical

validations

2.1 Introduction

Studying the free and forced wave propagation using purely analytical methods might be

arduous for complex geometries. For such geometries, a Finite Element modelling is recom-

mended. However, full modelling by the conventional Finite Element method could be costly

particularly when the model size is important. Analysis for the high frequencies ranges re-

quires a refined mesh and makes the use of the full model even more inappropriate. The Wave

Finite Element method represents an efficient alternative for periodic waveguides as commer-

cial packages can be exploited for a reduced FE modelling, and an analytical extension of

periodicity relations follows.

In this chapter, the formulation of the Wave Finite Element method is introduced. Theo-

retical notes are given: the scattering matrix and forced response computation techniques are

presented. Then, some examples of simple cases are considered for validation at the end of

the chapter. The proposed approach results are verified by comparison with either analytical

or Finite Element methods, and the main advantages of the approach are reviewed.
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2.2 The Wave Finite Element approach

2.2.1 Assumptions

The different properties of waves propagating in periodic waveguides can be given by the WFE

approach. A waveguide is supposed to be made of similar segments which are modelled using

same FE models and are connected along a main axis, called direction of propagation (See

Fig. 2.1). ∆ is the length of each one. It is assumed that the wall impedance is infinite

inside the waveguide, which corresponds to a rigid wall, and that either there are no internal

degrees of freedom or internal degrees of freedom have been already condensed onto the left

and right edges of each segment. The meshing compatibility of coupling interfaces provides

identical nodal distribution in the left and right faces. i.e. Each face is supposed to have the

same degree of freedom, noted n.

2.2.2 Eigenvalue problem formulation

First, the relation between velocities and pressures of one waveguide segment has to be

expressed:  vl

vr

 =

 Dll Dlr

Drl Drr

 pl

pr

 (2.1)

where p and v are respectively the pressures and particles velocities vectors.

The subscripts l and r respectively refer to as the left and right edges of the segment.

D is given by D = −ω2M + K where M and K are respectively the mass and stiffness

matrices of the waveguide segment, and ω is the angular frequency.

33



Wave Finite Element Method: Theoretical background and numerical validations

Figure 2.1. Illustration of a periodic waveguide.

Using the Zhong and Williams theory [70], Eq. (2.1) may be reformulated in terms of

state vectors as (See Appendix A):

ur = Sul (2.2)

where S is a (2n× 2n) symplectic matrix verifying:

Jn = StJnS (2.3)

and Jn =

 0 In

−In 0

; utl = [(pl)
t(−vl)

t] and utr = [(pr)
t(vr)

t]. t denotes the matrix

transpose.

The matrix S is expressed as [71]:

S =

 −D−1
lr Dll −D−1

lr

Drl −DrrD
−1
lr Dll −DrrD

−1
lr

 (2.4)

Considering the coupling conditions between two successive waveguide segments k and k+1,

u
(k+1)
l = u

(k)
r in Eq. (2.2) leads to:

u
(k+1)
l = Su

(k)
l (2.5)
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Using Bloch’s theorem [72], the solutions of Eq. (2.5) can be expressed as:

u
(k+1)
l = µu

(k)
l (2.6)

These solutions are (µj,Φj) and represent the wave modes propagating along the whole

waveguide. They are numerically calculated by means of the following eigenvalue problem:

SΦj = µjΦj (2.7)

det(S− µI2n) = 0 (2.8)

For a particular mode j, µj = exp(−ikj∆) where kj is the axial wavenumber, while the vector

Φj represents the wave mode shape. It is worth noting that every single eigenvector may be

partitioned into components of pressure and velocity, given Φt
j = [(Φp)tj(Φv)tj]. Considering

a specific eigenvalue µj, left multiplying of Eq. (2.7) by StJn gives:

StJnSΦj = µjS
tJnΦj (2.9)

As the matrix S is symplectic, Eq. (2.9) can be written as follows:

JnΦj = µjS
tJnΦj (2.10)

Then if we consider the transpose of Eq. (2.10), we can write:

(Φt
jJn)S =

1

µj
Φt
j Jn (2.11)

It is clear that (Φt
jJn) is a left eigenvector of matrix S. Hence, eigenvalues are defined for

j ∈ {1, .., n} such as:

µn+j =
1

µj
(2.12)

Hence, if eigenvalues {µi}i=1,..,n associated with eigenvectors {Φi}i=1,..,n correspond to

the forward going waves (|µ| < 1), eigenvalues {µi}i=n+1,..,2n associated with eigenvectors

{Φi}i=n+1,..,2n correspond to the backward going waves (|µ| > 1). Matrix Φ of the eigenvectors
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can be detailed in this way:

Φ =

 Φp
inc Φp

ref

Φv
inc Φv

ref

 (2.13)

As shown in [73] , the eigenvalue problem defined by Eq. (2.7) must be solved at particular

frequencies. This means that the wave modes established by Eq. (2.13) have to be arranged

for each frequency. Correspondence between two sets of modes defined at two frequencies,

close to each other, can be achieved in the WFE framework using the following criterion:

Given two wave modes b ∈ {1, .., n} and j ∈ {n+ 1, .., 2n} defined at pulsation ω , such that

µb (ω) = 1/µj (ω) , and for sufficiently little ∆ω, wave mode j defined at pulsation ω+ ∆ω is

such that [58]:∣∣∣∣∣ Φb (ω)t∥∥Φb (ω)t
∥∥Jn

Φj (ω + ∆ω)

‖Φj (ω + ∆ω)‖

∣∣∣∣∣ = maxk∈{n+1,..,2n}

{∣∣∣∣∣ Φb (ω)t∥∥Φb (ω)t
∥∥Jn

Φk (ω + ∆ω)

‖Φk (ω + ∆ω)‖

∣∣∣∣∣
}

(2.14)

where ‖y‖ stands for the hermitian norm of a vector y, defined as ‖y‖ =
√

yhy where h is

the conjugate transpose.

This criterion is the result of the orthogonality relations between the left and right eigenvec-

tors:

For µs (ω) 6= 1/µj (ω):

Φt
s (ω) JnΦj (ω) = 0 (2.15)

Finally, state vectors u
(k)
l and u

(k)
r of a substructure k are given by means of eigenvectors

{Φi}i=1,..,2n as:

u
(k)
l =

2n∑
i=1

ΦiQ
(k)
i (2.16)

and

u(k)
r =

2n∑
i=1

ΦiQ
(k+1)
i (2.17)

where {Qi}i=1,..,2n stand for the amplitudes of the wave modes.
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2.2.3 Numerical conditioning

The computation of wave characteristics by the WFE method may suffer from various nu-

merical issues. First, issues related to the FE discretisation must be reduced. The segments

length is chosen such as it is at least six times smaller than the minimal wavelength. As the

frequency increases, the length of segment is meant to be smaller. However when re-meshing

the waveguide with shorter segments, round-off errors due to truncation of inertia terms ap-

pear for the low frequencies. This is because Kij is much larger than ω2Mij. Some digits

associated with the inertia terms in Dij = Kij − ω2Mij are truncated after the subtraction.

The number of the digits truncated is approximately [29]:

nij = log10

|Kij|
|ω2Mij|

(2.18)

It is clear from Eq. (2.18) that there is a frequency below which errors become unacceptable.

In this case, a higher precision arithmetic must be used.

Furthermore, the resolution of the eigenvalue problem in the form (2.7) may be prone to

numerical issues especially when the FE model has a large number of degrees of freedom. The

eigenvalue problem includes both very small eigenvalues µ and very large eigenvalues 1/µ,

standing for waves that decay rapidly over a segment in the positive and negative directions,

respectively. Moreover, Dlr can be ill-conditioned. The condition number, given by the ratio

of the largest singular value to the smallest, of the matrix Dlr is large and numerical errors

are likely to occur when computing its inverse. It may be useful to convert problem (2.7) to

the quadratic eigenvalue problem which is better-conditioned [74, 29]:

 0 In

−D−1
lr Drl −D−1

lr (Dll + Drr)

 pl

µpl

 = µ

 pl

µpl

 (2.19)

The velocities component can be then obtained by:

vl = (Dll + µDlr) pl (2.20)

Another reformulation of the eigenvalue problem can be also considered. The following
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generalised eigenvalue problem is used to mitigate the ill-conditioning [28, 75, 76]:

F

 pl

pr

 = µjG

 pl

pr

 (2.21)

where F =

 0 In

Drl Drr

; G =

 In 0

−Dll −Dlr

; and Φj = G

 pl

pr

.

Matrices F and G could still have large condition numbers because terms of matrix In have

a different order compared to matrices Drr and Dll. The first row is multiplied by the factor

||Drr||2 so that the condition number is significantly reduced.

 0 ||Drr||2In
Drl Drr

− µj
 ||Drr||2In 0

−Dll −Dlr

 pl

pr

 = 0 (2.22)

The present form is better-conditioned than form (2.7) and there are not numerical problems

any more.

2.2.4 Scattering matrix computation

Let us suppose that an acoustic treatment covers partially the external surface of the duct.

Transmission and reflection, for the different modes, may be predicted by computing the

scattering matrix.

Figure 2.2. Description of the lined duct model.
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As presented in Fig. 2.2, the studied problem can be modelled as two waveguides wg1 and

wg2 linked through a coupling element which could be discretised using p-only fluid elements

under FE software. Unless the determination of the phase of the scattering coefficients is of

interest, the length of the coupling element can be larger than the lined part length.

The pressure and velocity vectors are related such as:

v(Nc×1) = Dc(Nc×Nc)p(Nc×1) (2.23)

where Nc is the total number of degrees of freedom of the coupling element.

From the equation of mass conservation combined with the equation of state, and the

equation of momentum conservation [12], the radial boundary conditions for a sound-hard

boundary ΓR and an absorbing boundary ΓL, are expressed respectively by:

∂p

∂nR
= 0 (2.24)

∂p

∂nL
= i

ω

cZ
p (2.25)

where ni is the outward normal to the boundary, c is the celerity of the sound in the air,ω is

the angular frequency and Z is the normalised impedance of the liner.

Following the pressure finite elements formulation, terms of the elementary damping ma-

trix are further given by:

Ce
cij =

∫
Γe
L

1

cZ
NiNjdS (2.26)

where Ni and Nj are the two dimensional element shape functions [77].

The dynamic stiffness matrix Dc is then given in terms of mass, damping and stiffness

matrices of the coupling element as follows:

Dc = −ω2Mc + iωCc + Kc (2.27)
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A block matrix formulation of the matrix Dc can be written as follows:

Dc =


D̃ll(n×n) D̃li(n×(Nc−2n)) D̃lr(n×n)

D̃il((Nc−2n)×n) D̃ii((Nc−2n)×(Nc−2n)) D̃ir((Nc−2n)×n)

D̃rl(n×n) D̃ri(n×(Nc−2n)) D̃rr(n×n)

 (2.28)

where n is the number of degrees of freedom per cross-section.
D̃ll D̃li D̃lr

D̃il D̃ii D̃ir

D̃rl D̃ri D̃rr




p
(c)
l

p
(c)
i

p
(c)
r

 =


v

(c)
l

0

v
(c)
r

 (2.29)

where superscript (c) refers to the coupling element.

Replacing p
(c)
i by its expression from the second row in the first and third rows allows

suppression of the internal nodes. Finally, after eliminating the internal degrees of freedom

the condensed dynamic stiffness matrix D∗
c can be written as:

D∗
c =

 D̃ll − D̃liD̃
−1

ii D̃il D̃lr − D̃liD̃
−1

ii D̃ir

D̃rl − D̃riD̃
−1

ii D̃il D̃rr − D̃riD̃
−1

ii D̃ir

 (2.30)

It should be noted that the calculation of the dynamic stiffness matrix of the coupling element

condensed onto the interfaces must be done at each frequency. Thus, direct inversion of D̃ii

has a high computational cost especially if the coupling element includes many degrees of

freedom. The inverse of D̃ii can be given by:

D̃
−1

ii = (K̃ii + iωC̃ii − ω2M̃ii)
−1 = (I− ω2K̃

−1

ii (M̃ii −
i

ω
C̃ii))

−1K̃
−1

ii (2.31)

When ||ω2K̃
−1

ii (M̃ii −
i

ω
C̃ii)|| remains less than 1, a less costly approach is to use a second

order expansion in Neumann series of D̃
−1

ii :

D̃
−1

ii = [I + ω2K̃
−1

ii (M̃ii −
i

ω
C̃ii) + ω4K̃

−1

ii (M̃ii −
i

ω
C̃ii)K̃

−1

ii (M̃ii −
i

ω
C̃ii)]K̃

−1

ii (2.32)
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To calculate the condensed dynamic stiffness matrix, K̃
−1

ii is calculated only once in the

frequency range for which the condition for the expansion in Neumann series is verified, so

the computational cost is reduced.

Two coupled waveguide segments (1) and (2) belonging respectively to the waveguides wg1

and wg2 are modelled (Fig. 2.2). It can be shown that amplitudes (Qref(1); Qref(2)) of

the modes reflected by the coupling element at the interface are related to the amplitudes

(Qinc(1); Qinc(2)) of the modes incident to the coupling element at the interface by means of

the scattering matrix [56, 78].

Indeed, expressions of state vectors u
(1)
r and u

(2)
l of segments (1) and (2) give:

 p
(1)
r

p
(2)
l

 =

 Φp
inc(1) 0 Φp

ref(1) 0

0 Φp
inc(2) 0 Φp

ref(2)




Qinc(1)

Qinc(2)

Qref(1)

Qref(2)

 (2.33)

 v
(1)
r

v
(2)
l

 =

 Φv
inc(1) 0 Φv

ref(1) 0

0 Φv
inc(2) 0 Φv

ref(2)




Qinc(1)

Qinc(2)

Qref(1)

Qref(2)

 (2.34)

Considering the coupling’s conditions of interfaces guides-coupling element which state that:

 p
(c)
l

p
(c)
r

 =

 p
(1)
r

p
(2)
l

 ;

 v
(c)
l

v
(c)
r

 = −

 v
(1)
r

v
(2)
l

 ,

Eqs. (2.33) and (2.34) lead to:

−D∗
c

[
Ψp

incΨp
ref
]


Qinc(1)

Qinc(2)

Qref(1)

Qref(2)

 =
[
Ψv

incΨv
ref
]


Qinc(1)

Qinc(2)

Qref(1)

Qref(2)

 (2.35)
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where

Ψp
inc =

 Φp
inc(1) 0

0 Φp
inc(2)

 Ψp
ref =

 Φp
ref(1) 0

0 Φp
ref(2)


Ψv

inc =

 Φv
inc(1) 0

0 Φv
inc(2)

 Ψv
ref =

 Φv
ref(1) 0

0 Φv
ref(2)


The scattering matrix C is defined such as : Qref(1)

Qref(2)

 = C

 Qinc(1)

Qinc(2)

 (2.36)

where

C = −
(
D∗

cΨp
ref + Ψv

ref
)+ (

D∗
cΨp

inc + Ψv
inc
)

(2.37)

and + refers to the pseudo-inverse [79].

2.2.5 Computation of the forced response of rigid waveguides

A rigid cylindrical duct submitted to acoustical pressure p(ω) and a normalised impedance

Z at its left and right ends respectively is considered. The duct is divided into N segments

whose lengths are satisfying the following condition:

∆ ≤ c

12fmax
(2.38)

where c stands for the celerity of sound in the air, (c/fmax) is the minimal wave length.

Boundary condition in the left side can be expressed as following:

Φp
incQinc(1) + Φp

refQref(1) = p0 (2.39)

Superscript (i) refers to the ith cross-sectional surface of the waveguide and p0 is the magni-

tude of the imposed pressure.

The right side boundary condition can be written as follows [80]:

µ−NQref(1) = RµNQinc(1) (2.40)

42



Wave Finite Element Method: Theoretical background and numerical validations

where N is the number of segments composing the duct. µ is the (n× n) diagonal matrix of

eigenvalues corresponding to the incident modes, and R stands for a reflection matrix and

can be given as:

R =


R1 · · · 0
...

. . .
...

0 · · · Rn

 (2.41)

where [40]:

Rn =
Z cos θn − 1

Z cos θn + 1
(2.42)

θn = cos−1

√1−
(
f cn
f

)2
 (2.43)

and f cn is the cut-off frequency of the nth mode . Note also that, if the modes eigenvalues are

sorted in ascending order for the first frequency in criterion (2.14), the nth mode corresponds

to the plane wave mode, the (n − 1)th mode to the first cross-sectional mode, and so on.

Given Eqs. (2.39) and (2.40), we can write:

 (Φp
inc)−1p0

0

 =

 In (Φp
inc)−1(Φp

ref )

RµN −µ−N

 Qinc(1)

Qref(1)

 (2.44)

Solving Eq. (2.44) needs appropriate manipulations to avoid numerical errors due to close-

to-singular or badly scaled matrices. Hence, it will be worth solving Eq. (2.44) this way:

 Qinc(1)

Qref(1)

 =

 In 0

0 µN

 In (Φp
inc)−1(Φp

ref )µN

RµN −In

−1 (Φp
inc)−1p0

0

 (2.45)

The pressure vector for the kth cross-section is given by:

p(k) =
(

Φp
inc Φp

ref
) µk−1 0

0 µ−(k−1)

 Qinc(1)

Qref(1)

 (2.46)
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It should be noted that, when the kth cross-section is far from the 1st cross-section, calculation

of the forced response may be prone to numerical difficulties. This is because terms in µ−(k−1)

in Eq. (2.46) tend to infinity in this case. A solution for this issue is to retain only the

propagating and the less decaying waves and eliminate the strongly evanescent waves for

which |µ| < κ, where κ is a user-defined value [27, 28]. The waves for which |µ| is too small

are rapidly decaying and almost with no contribution to the overall response while they do

cause numerical issues.

2.2.6 Computation of the forced response of coupled waveguides

Two coupled waveguides are assumed to be submitted to prescribed pressure and impedance

on their uncoupled limits. N1 and N2 segments constitute respectively the waveguides wg1

and wg2.

The boundary conditions will be expressed as:

For waveguide wg1:

(Φp
inc)wg1Q

inc(1)
wg1

+ (Φp
ref )wg1Q

ref(1)
wg1

= p0 (2.47)

µ−N1
wg1

Qref(1)
wg1

= C11µ
N1
wg1

Qinc(1)
wg1

+ C12µ
N2
wg2

Qinc(1)
wg2

(2.48)

For waveguide wg2:

µ−N2
wg2

Qref(1)
wg2

= C21µ
N1
wg1

Qinc(1)
wg1

+ C22µ
N2
wg2

Qinc(1)
wg2

(2.49)

Qref(1)
wg2

= RQinc(1)
wg2

(2.50)

where {Cij}i=1,2,j=1,2 represent the square block components of the scattering matrix C. Di-

agonal blocks {Cii}i=1,2stand for reflection matrices, while off-diagonal blocks stand for trans-

mission matrices. R is given by Eq. (2.41). Superscript (i) refers to the ith cross-sectional

surface of the waveguide. µwg1 and µwg2 are the (n × n) diagonal matrix of eigenvalues

corresponding to the incident modes of the waveguides wg1 and wg2, respectively. As we are
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considering identical waveguides, we have :

µwg1 = µwg2 = µ (2.51)

Then, we can write:
p0

0

0

0

 =


Φp

inc Φp
ref 0 0

−C11µ
N1 µ−N1 0 −C12µ

N2

−C21µ
N1 0 µ−N2 −C22µ

N2

0 0 In −R




Qinc(1)
wg1

Qref(1)
wg1

Qref(1)
wg2

Qinc(1)
wg2

 (2.52)

Direct inversion of Eq. (2.52) may be prone to ill-conditioning problems. So, after

appropriate scaling, we will have:


Qinc(1)
wg1

Qref(1)
wg1

Qref(1)
wg2

Qinc(1)
wg2

 =


In 0 0 0

0 µN1 0 0

0 0 µN2 0

0 0 0 In




In (Φp

inc)−1Φp
refµN1 0 0

−C11µ
N1 In 0 −C12µ

N2

−C21µ
N1 0 In −C22µ

N2

0 0 µN2 −R



−1


(Φp

inc)−1p0

0

0

0

(2.53)

The pressure vector for the kth cross-section is given by:

p(k) =
(

Φp
inc Φp

ref
) µk−1 0

0 µ−(k−1)

 Qinc(1)
wg1,2

Qref(1)
wg1,2

 (2.54)

If the duct was submitted to pressure at both ends, we would have only to replace

Eq.(2.50) by Eq.(2.55):

(Φp
inc)wg2Q

inc(1)
wg2

+ (Φp
ref )wg2Q

ref(1)
wg2

= p0 (2.55)
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2.3 Application to the guided acoustical propagation

2.3.1 Rigid duct modes representation

• Cylindrical waveguide

The real parts of the axial wavenumbers of a 0.08 m diameter waveguide are calculated

through the WFE method. The ones corresponding to waves travelling in the positive direc-

tion of propagation are represented in Fig. 2.3 and compared to the analytical solutions. In

this case, the highest frequency at which only plane waves will propagate is ≈ 2500 Hz.

The axial wavenumbers are related to the free field wavenumber and the radial wavenumber

Figure 2.3. Frequency evolution of the axial wavenumbers real parts corresponding to the
forward-going waves for the case of a 0.08 m diameter waveguide : (—) WFE method (*)
Analytical method.

by the dispersion relation. For a rigid cylindrical duct, an axial wavenumber will be asso-

ciated to the ith zero of the derivative of the mth order Bessel function of the first kind as

following [81]:

kmi =

√
4π2f 2

c2
− χ2

mi

a2
(2.56)

where c is the celerity of sound in the air, f is the frequency, χmi are the Bessel function

derivative zeros and a is the radius of the duct.

46



Wave Finite Element Method: Theoretical background and numerical validations

The axial wave numbers are either real or imaginary. That is to say, for each frequency, there

are a finite number of modes with purely real axial wavenumbers which stand for propagating

modes and an infinite number of modes with purely imaginary axial wavenumbers which

correspond to evanescent ones. Moreover, each mode travels from one end to the other and

vice versa. The forward-going (resp. backward-going) waves are such their group velocity c+
g

(resp. c−g ) is positive (resp. negative). The group velocity and the phase velocity of a cut-on

mode satisfy for each frequency the following relation:

c±g c
±
ph = c2 with c−ph ≤ −c ≤ c−g < 0 < c+

g ≤ c ≤ c+
ph

(2.57)

Except for the plane wave mode, where cph = cg = ±c, the group velocity is smaller than c

because the modal wave fronts do not propagate parallel to the x-axis, but rather follow a

longer path.

Pressure’s real part contours by the ANSYS software and the WFE method are presented

in Figs. 2.4 and 2.5 for a cylindrical duct submitted to modes (0, 1) and (1, 1) respectively

and ended by a normalised impedance Zend=2.

Figure 2.4. Pressure’s real part contours for a cylindrical duct submitted to mode (0,1),
f =6000Hz and Zend=2, by (a) ANSYS and (b) WFE.
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Figure 2.5. Pressure’s real part contours for a cylindrical duct submitted to mode (1,1),
f =6000Hz and Zend=2, by (a) ANSYS and (b) WFE.

• Annular waveguide

The axial wavenumbers of guided acoustical propagation inside an annular duct were cal-

culated. Fig. 2.6 shows the frequency evolution of the axial wavenumbers real parts of

forward-going waves by both WFE method and analytical method. Inner and outer radii,

ainner and aouter, are equal to 0.04 m and 0.048 m respectively. The axial wavenumbers

are calculated analytically by the dispersion relation at each frequency. The transversal

wavenumbers αmi in this case satisfy [82, 83]:

J
′

m(αmi ainner)Y
′

m(αmi aouter)− J
′

m(αmi aouter)Y
′

m(αmi ainner) = 0 (2.58)

where J
′
m and Y ′m stand here for the derivatives of the mth order Bessel functions of first

kind and second kind respectively [45]. m and i are respectively the circumferential order

and the radial order of the duct modes. Eq. (2.58) is the result of applying the hard

boundary condition at the outer and inner walls of the duct, and solutions were determined

using reference [84]. An infinity of solutions exist for each circumferential order m. Solution

α00 = 0 is not included in Eq. (2.58) and corresponds to the plane wave mode. Plane waves

always propagate while higher order modes propagate only above the frequency at which

they are cut-on [85].
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Figure 2.6. Frequency evolution of the axial wavenumbers real parts corresponding to the
forward-going waves for the case of an annular waveguide : (—) WFE method (*) Analytical
method.

2.3.2 Forced response of hard-walled ducts

We consider now a particular example of a rigid duct ended with a real impedance such that

it is partially reflective (See Fig. 2.7). There are a variety of acoustic sources that can be

applied to excite the system such as a pressure condition or a displacement condition.

Figure 2.7. Description of the rigid duct model.

Here, a pressure condition is applied equally to the end nodes of the duct. This will create

a plane wave, and therefore the rigid duct is used under plane wave conditions. The duct

was modelled under ANSYS using the 3D element type FLUID30 with a total number of

elements equal to 8000.
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Figure 2.8. Frequency evolution of the pressure magnitude at x = L/2 inside a rigid duct
submitted to pressure mode (0, 0) and a normalised impedance Z = 2 at its ends.

This is an entirely acoustic analysis and there are no active displacement degrees of

freedom. The real acoustic impedance at the end of the duct may be added using a surface

load to the nodes using appropriate APDL commands [86]. The admittance is defined for

the elements which have nodes at the end area. A harmonic analysis was considered and

post-processing results were compared to the WFE method. The radius of the considered

duct is a = 0.02 m. The length of the duct is L = 0.25 m. The magnitude of the imposed

pressure p(ω) is p0 = 1 Pa and the normalised acoustical impedance at the end is Z = 2.

The forced response at x = L/2 is shown by Fig. 2.8.

Furthermore, the case of a duct submitted to pressures at its both ends was also studied.

The same methods were used for modelling, except applying a pressure load at the second

end instead of the impedance condition. Here, the acoustic sources generate acoustic plane

waves from the ends, and pressures p(ω) have the same magnitudes p0 = 1 Pa.

The radius of the considered duct is a = 0.06 m. The length of the duct is 0.32 m. The

cross-sectional areas of the duct were discretised using 177 nodes, and the total number of

the FLUID30 elements is 16640. The results given by the WFE in Fig. 2.9 are compared

against the results generated using ANSYS.
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Figure 2.9. Frequency evolution of the pressure magnitude at x = L/2 inside a rigid duct
submitted to pressure mode (0, 0) at its both ends.

2.3.3 Forced response of lined ducts

The case of a duct having a lined part with a complex liner impedance is considered. The

element SURF154 1 is used for the lined area. These are structural elements. Therefore, any

fluid elements in contact with these elements must have the displacement degrees of freedom

activated.

Figure 2.10. ANSYS Finite Element model of the cylindrical duct.

1This element is a surface effect element. The fluid-structure interaction flag is applied to the selected
nodes on which to overlay surface effect elements.
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The considered normalised impedance in this example is Zl = 2− 5i. The resistance will

be defined as the viscosity of the material and the reactance will be introduced within the

elastic foundation stiffness with frequency dependence [86]. The element type FLUID30 is

used for the internal elements. The duct was submitted to the pressure mode (0, 0) at its

both ends. Nevertheless, higher-order propagative modes and evanescent modes can appear

due to the discontinuity of impedance. The ANSYS Finite Elements model of the duct is

given in Fig. 2.10. The pressure magnitude is p0 = 1 Pa for the both ends. The radius of

the duct is a = 0.06 m. The WFE method was compared to the FE method as shown in Fig.

2.11.

Figure 2.11. Frequency evolution of the pressure magnitude in one point inside a cylindrical
duct with a lined part submitted to pressure mode (0, 0) at its both ends.

The case of a cylindrical lined duct with a real termination impedance is now studied.

The other end was submitted to the pressure mode (0, 0) with (p0 = 1Pa). It is worth noting

that, in the frequency domain, p0 is the magnitude of the harmonic pressure source. The

normalised impedance of the liner is Zl = 2− 5i, while the normalised impedance at the end

is Z = 2. The radius of the duct is a = 0.06 m. The duct was modelled using 6760 FLUID30

elements respecting the mesh sizing condition given by Eq. (2.38). The forced response

using the WFE method is determined after solving Eq. (2.53). The use of the pseudo-inverse

when computing the solution is necessary. This uses the singular value decomposition for the
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inversion of ill-conditioned matrices [87, 88]. The obtained results are compared to results

given by the FE method (See Fig. 2.12).

Figure 2.12. Frequency evolution of the pressure magnitude in one point inside a cylindrical
duct with a lined part submitted to pressure mode (0, 0) and a normalised impedance Z = 2
at its ends.

Let us model at present a duct with a lined part with a rectangular cross-section. The

ANSYS Finite Elements model is given in Fig. 2.13. A segment was first modelled under

ANSYS using 35 p-only FLUID30 elements.

Figure 2.13. ANSYS Finite Element model of a duct with a rectangular cross-section.
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The mass and stiffness matrices were then exported to MATLAB for post-processing. The

scattering matrix was computed as done for the previous examples. A harmonic analysis was

then performed under the software ANSYS from 50 Hz to 7 kHz in 50 Hz increments. This

was used to calculate the acoustical pressure in a node within the duct using the FE method.

The duct was submitted to pressures at its both ends to generate the plane wave mode. The

magnitude of pressures p(ω) is p0 = 1 Pa. The assigned normalised impedance on the lined

part of the tube area is Zl = 2− 5i. The cross-sectional area is 0.04× 0.056 m2. The forced

response in one point inside the duct can be then represented and compared to the WFE

method as shows Fig. 2.14.

Figure 2.14. Frequency evolution of the pressure magnitude in one point inside a duct with
a lined part submitted to pressure mode (0, 0) at its both ends.

Comparison between the WFE method and the FE method for the forced response shows

that the results obtained with the WFE method are accurate compared to the FE method,

with considerably lower computational cost as we need to model only a little portion instead

of the whole waveguide. Indeed, the CPU time for the WFE method depends only on the

mesh density of the cross-sectional area of the duct, while for the FE method it depends also

on the length of the modelled duct and increases as the length increases.

As an illustration, the elapsed computing times for the calculation of the forced response of

a 0.92 m length rigid duct with both methods are summarised hereafter (Table. 2.1)
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Method CPU time CPU time reduction percentage

FEM 545.14 s –

WFEM 65.84 s 87,92 %

Table 2.1. FE and WFE computing times for a 0.92 m length duct and for same machine
capacities.

2.3.4 Scattering coefficients of lined ducts

The scattering matrix depends only on the geometry of the characterised duct regardless of

the inputs. Only transmission from one of the two sides to the other side and reflection from

the lined part to one of the two sides were studied as the problem is symmetric.

Blocks {Cij}i=1,2,j=1,2 of the scattering matrix were computed using the formulation given

in 2.2.4. For the formulation given by Eq. (2.36), Cij is a reflection matrix if i = j, and a

transmission matrix else.

The 3D fluid elements were used for the WFE discretisation. The WFE method was

compared to the analytical method model for axisymmetric waveguides given by [12] with

an appropriate truncated modes number.

The following simulations were done for a lined length equal to 0.01 m for a 0.02 m

diameter duct, and 0.02 m for a 0.12 m diameter duct. The normalised impedance of the

liner is Z = 2− 5i.

The frequency evolution of the plane wave mode transmission and reflection coefficients

for different duct radii is represented in Fig. 2.15 and 2.16.

Designation ”of the mode (0, 0)” in figures titles stands for the transmission and the

reflection of the same mode given by the n th diagonal term of the transmission and the

reflection matrices respectively.
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(a)

(b)

Figure 2.15. Modulus of the transmission coefficient (a) and the reflection coefficient (b)
of the mode (0, 0) for Z = 2− 5i and a radius a = 0.01 m.

56



Wave Finite Element Method: Theoretical background and numerical validations

(a)

(b)

Figure 2.16. Modulus of the transmission coefficient (a) and the reflection coefficient (b)
of the mode (0, 0) for Z = 2− 5i and a radius a = 0.06 m.

Furthermore, transmission and reflection coefficients of two high-order modes, (2, 0) and

(0, 1), are represented in Figs. 2.17 and 2.18 from their respective cut-off frequencies. For

a radius a = 0.06 m, cut-off frequencies of modes (2, 0) and (0, 1) are 2754 Hz and 3455 Hz

respectively.

Conversion between modes (0, 0) and (0, 1) is represented in Fig. 2.19, while conversion of

modes (0, 0) and (2, 0) gives negligible values.
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(a)

(b)

Figure 2.17. Modulus of the transmission coefficient (a) and the reflection coefficient (b)
of the mode (2, 0) for Z = 2− 5i and a radius a = 0.06 m.
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(a)

(b)

Figure 2.18. Modulus of the transmission coefficient (a) and the reflection coefficient (b)
of the mode (0, 1) for Z = 2− 5i and a radius a = 0.06 m.
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(a)

(b)

Figure 2.19. Modulus of the transmission coefficient (a) and the reflection coefficient (b)
for conversion between modes (0, 0) and (0, 1) for Z = 2− 5i and a radius a = 0.06 m.

Results of the analytical method and the WFE method for the transmission and reflection

coefficients show a good agreement. Each incident mode reflects and transmits into a modal

spectrum. However, there is no scattering into other modes with different circumferential

orders because of the circumferential symmetry.

It is worth noting that numerical difficulties are more likely to occur for a larger lined length.

First, the analytical method becomes prone to numerical issues caused by the evanescent

part of the modes inside the lined region in the exponentially diverging terms e−ikjx, where

kj are the (complex) axial wavenumbers inside the lined duct part. Secondly, the dynamic
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condensation of the matrix Dc will have a high computational cost since increasing the num-

ber of internal degrees of freedom makes inversion of D̃ii time consuming.

When the lined length is large, we can consider a cascade of successive elementary scatter-

ers instead [47]. The global scattering matrix of the segmented liner is then obtained by

juxtaposition of the elementary segments using a simple composition law [47].

2.4 Conclusion

The study of the guided acoustical propagation through the use of the WFE method has

been numerically validated. Eigensolutions are calculated at a particular waveguide section,

then pressures and velocities can be determined at any section for the whole waveguide. The

use of the Wave Finite Element Method allows the reduction of the number of elements

and therefore the computational requirements. Nevertheless, it was shown that some scaling

strategies have to be used to overcome numerical difficulties.

Typical configurations of the guided acoustical propagation with and without the introducing

of damping due to local impedances have been studied in this chapter. Forced response to

imposed boundary conditions at the ends of the waveguide was calculated through the Wave

Finite Element approach and validated by the conventional Finite Element approach. The

presented results correspond to amplitudes of the resulting wave, sum of the incident and the

reflected waves, for different frequencies of excitation. It is shown that the resulting wave can

have an amplitude much larger than the amplitude of the incident wave for some frequencies

which stand for resonance frequencies, whereas modulus of the impedance imposed at the

end of the waveguide determines the amplitude of the reflected wave itself. Constant values

of acoustic impedances, including real positive impedances which correspond to a reflection

without a change in the the phase (necessarily positive because boundary absorbs energy)

and complex impedances, were considered. Until now, simple examples have been dealt with.

The main goal was to validate the WFE method. However, a constant liner impedance might

be way too far from being sufficiently realistic. In the following chapter, frequency dependent

impedances will be rather considered, and acoustic properties of a more complete liner model

will be taken into account.
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Chapter 3

Numerical modelling of the acoustical

multi-modal scattering of ducts with

industrial liners

3.1 Introduction

When two duct parts of different properties are linked to each other, a modal representation

in each part can be used. However as the modes are different for each region, the expansion

of the incident field must be reformulated into an expansion of the transmitted field in the

adjacent part and the reflected field using conditions of continuity of pressure and velocity.

This is referred to as mode matching. This method is used for ducts with discontinuity,

typically a change of diameter. When the duct is lined with an absorbing material that

allows only sound propagation in the material normal to the wall, the material is considered

as locally reacting and may be represented by a wall impedance Z(ω). The modes in the

lined part are calculated using the boundary condition at the wall. Transversal wavenumbers

of the lined region have to be found and axial wavenumbers are then calculated using the

dispersion relation. Redon et al. [42], for instance, used the Newton-Raphson method to

compute the roots satisfying the wall impedance boundary condition. Kirby and Denia [89]

applied the same method to find roots in a porous region of a circular dissipative silencer.

These methods may suffer from missing roots because they depend on initial guesses [89].
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Sun et al. [90] proposed a method to calculate the solutions for locally and non-locally

reacting liners constructing a linear homotopy and solving an ordinary differential equation

using a fourth order Runge-Kutta method by varying the homotopy parameter from 0 to 1.

When the duct geometry is a little more complex than a circular or a rectangular one, it is

not possible to calculate transmission and reflection matrices analytically because the mode

matching technique requires to express analytically the modes in each part prior to it [91, 92].

Therefore, finite element discretisation is preferred for arbitrary shaped cross-sections.

This chapter is devoted to the study of scattering due to honeycombs and porous liners

within periodic waveguides. Locally reacting liners, namely honeycombs, are ones where

sound propagation may only occur normal to the surface of the liner, which implies it is

characterised only by its local impedance and is completely independent of whatever occurs

elsewhere in the liner. The surface impedance of these liners will be calculated. Porous

liners are Bulk reacting liners and sound can propagate in all directions. It is not always

possible to represent the liner effect by an equivalent impedance, particularly for multi-modal

excitation sources. Hence, we will use the three dimensional modelling of the entire porous

domain. Scattering due to a change of the boundary at the wall or a change in the medium

can be calculated. Acoustic power attenuation and Transmission Loss are computed too.

Boundary conditions problems are dealt with and validations by the conventional methods

are presented.

3.2 Sound propagation in ducts with locally reacting

liners

In this section, the scattering inside ducts due to locally reacting liners is studied. The liner

is composed of a micro-perforated plate, a cavity and a rigid backing plate (Fig. 3.1). The

dimension of the cavities in the transversal direction is sufficiently little to remain smaller

than a wavelength [93]. Waves are then assumed to travel only in the direction normal

to the plates. The acoustic impedance of the liner can be calculated independently of the

incidence angle. The equivalent surface impedance of the liner is given by the sum of the

cavity and micro-perforated plate impedances. The impedance of the cavity can be calculated
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by a simple development of the relation between the pressure and velocity inside the cavity

. Empirical models are used to determine the micro-perforated plate impedance. Many of

them were detailed in literature. Reader may refer to [35, 94, 95, 96, 97]. Here, the linear

Guess model will be used. The acoustic velocity and the flow effects are not taken into

account. Hence, the linear Guess model is supposed to describe with sufficient accuracy the

MPP impedance [98].

Figure 3.1. Calculation domain (a) and composition of the liner (b).

3.2.1 Equivalent impedance computation

• Cavity impedance:

The pressure inside the cavity can be expressed as follows:

pc(y) = Ace
i(ky−ωt) +Bce

i(−ky−ωt) (3.1)

k is the wavenumber, ω is the angular frequency and y is the axis normal to the plates.

The velocity component following y is:

vc(y) =
1

ρ0c

(
Ace

i(ky−ωt) −Bce
i(−ky−ωt)) (3.2)

ρ0 is the density of the air and c is the celerity of the sound in the air.

Since the back of the cavity is rigid, vc(0) = 0. Thus, Ac = Bc. Then, pressure and

64



Numerical modelling of the acoustical multi-modal scattering of ducts with industrial liners

velocity expressions become respectively:

pc(y) = 2Ac cos(ky)e−iωt (3.3)

vc(y) = 2i
Ac
ρ0c

sin(ky)e−iωt (3.4)

The normalised surface impedance of the cavity is finally given by:

zc =
pc(D)

ρ0cvc(D)
= −i cot(kD) (3.5)

where D is the cavity depth.

• Micro-perforated plate impedance:

We define the following entities:

Medium properties:

k: Wavenumber,

ω: Angular frequency,

f : Frequency,

c: Sound celerity,

ρ0: Density,

ν: Kinematic viscosity of the fluid,

ks = (iω/ν)1/2: The Stokes wave number.

Geometric parameters:

e : Plate thickness,

d : Orifice diameter,

ϕ : Porosity.

The Guess linear model detailed in [99] is given as following :

For ke << 1, kd/2 < 1/4 and |ksd/2| > 10:

R =

√
8νω

ϕc

(
1 +

e

d

)
+

1

8ϕ
(kd)2 (3.6)
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χ =
ω

ϕc

[
e+

8d

3π
(1− 0.7

√
ϕ) +

√
8ν

ω

(
1 +

e

d

)]
(3.7)

R and χ are respectively the resistance and the reactance of the micro-perforated plate.

The empirical term (1− 0.7
√
ϕ) is used as a correction instead of the Fok function to

express the holes interaction effect [100].

• Total equivalent impedance:

The normalised impedance of a perforated plate backed by a cavity is the sum of

impedances and is written as following [20]:

Z = R+ i(χ− cot(kD)) (3.8)

3.2.2 Forced response of a rigid duct ended by perforated plate

and backing cavity

This section deals with the prediction of the sound pressure in a hard-walled duct. The

studied medium is supposed to be periodic with a plane wave mode excitation at inlet and

a perforated plate backed by a cavity at outlet as shown in Fig. 3.2. In this case, the WFE

approach is used and compared to the ANSYS post-processing results (the conventional Finite

Element method). In order to study the frequency response of the medium using ANSYS,

Figure 3.2. Rigid cylindrical duct ended by a perforated plate and a backing cavity.

the duct was discretised using the FLUID30 elements in a harmonic analysis. To introduce

the termination impedance, the surface effect element SURF154 was used. Since these are

66



Numerical modelling of the acoustical multi-modal scattering of ducts with industrial liners

structural elements, every single fluid element in contact with the SURF154 elements must

have the displacement degrees of freedom activated. The fluid-structure interaction flag is

applied. All other FLUID30 elements have only the pressure degree of freedom. As the

impedance is function of the frequency and reactance is less than zero for the low frequencies

and greater than zero for high frequencies (Fig. 3.3), one of two ways has to be adopted for

introducing the reactance, depending on the sign of the the imaginary part of the impedance.

For the frequency range where the reactance is positive, the additional mass per unit area

is used. Elsewhere, the elastic foundation stiffness is used. It is not possible to tabulate the

real element constants. Thus, an iteration along with the solve command is issued switching

between the mass or stiffness definitions following the sign of the imaginary impedance. The

pressure magnitudes of the excitation are equal to 1 Pa. Since pressures are applied equally

to the the nodes, the plane wave mode was generated.

The radius of the duct is 0.04 m. Length of the duct is L = 0.24m. The length of the

segments composing the duct used for the WFE method is 0.002 m. Depth of the cavity

is D = 0.01 m. In this example, a porosity ϕ = 1%, a plate thickness e = 0.001 m, and

a diameter of the orifices d = 0.001 m are considered. 19360 fluid elements were used for

the FE model. The frequency evolution of the pressure magnitude in a point at x = L/2 is

represented in Fig. 3.4.

Parameter Value
Air

Celerity of sound 340 m/s
Density 1 kg/m3

Duct
Radius 0.04 m
Length 0.24 m

Honeycomb
Porosity 1 %

MPP thickness 0.001 m
Orifices diameter 0.001 m

Cavity depth 0.01 m

Table 3.1. Summary of the parameters used for the rigid duct ended by a honeycomb
structure.

67



Numerical modelling of the acoustical multi-modal scattering of ducts with industrial liners

Figure 3.3. Normalised resistance (a) and normalised reactance (b) at the end of the duct
computed using the linear Guess model.

Figure 3.4. Frequency evolution of the pressure magnitude in one point within a rigid duct
submitted to the mode (0,0) and ended by a perforated plate and a backing cavity: (—)WFE
method (...)FE method.
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3.2.3 Scattering of lined ducts

• Scattering coefficients

This section deals with the evaluation of scattering coefficients for periodic ducts with

impedance discontinuity. We consider a cylindrical duct (see Fig. 3.5). The study was per-

formed up to 8000 Hz for a diameter 0.16 m, and a lined length 0.015 m. 24 modes are cut-on

at maximal frequency (See axial wavenumbers in Fig. 3.6), and highest frequency at which

only plane wave mode propagates is ≈ 1245 Hz. The lined part represents the discontinuity

within the duct.

We consider: a porosity ϕ=3%, a perforated plate thickness e = 10−3 m, holes diameter

d = 10−3 m and a cavity depth D = 10−2 m. The frequency evolution of the liner impedance

is represented in Fig. 3.7.

Figure 3.5. ANSYS Finite Element model of the cylindrical duct with a lined part.
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(a) (b)

Figure 3.6. Axial wavenumbers in the rigid duct part at simulation’s maximal frequency:
(a)Real part (b)Imaginary part.

Figure 3.7. Normalised resistance (a) and normalised reactance (b) of the liner computed
using the linear Guess model.
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The cross-section’s mesh includes 364 degrees of freedom. The length of segments used

for the WFE discretisation is 0.002 m and 3D fluid elements are used. The scattering matrix

was also computed for validation using the analytical method as was detailed in [12] with a

sufficiently truncated modes number.

Parameter Value
Air

Celerity of sound 340 m/s
Density 1 kg/m3

Duct
Radius 0.08 m

Lined length 0.015 m
Honeycomb

Porosity 3 %
MPP thickness 0.001 m

Orifices diameter 0.001 m
Cavity depth 0.01 m

Table 3.2. Summary of the parameters used for the duct lined with a honeycomb structure.

Frequency evolution of the scattering coefficients can be then represented for different

modes (m, i) by both methods, where m and i stand for the circumferential and radial mode

orders respectively. Letters ′T ′ and ′R′ denote transmission and reflection respectively. Fig.

3.8 shows the transmission and reflection coefficients moduli of the mode (0,0).
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(a)

(b)

Figure 3.8. Frequency evolution of the transmission coefficient T((0, 0), (0, 0)) (a) and the
reflection coefficient R((0, 0), (0, 0)) (b) . (—)WFE method (- - -) Analytical method.

Scattering of higher orders modes was moreover studied. Fig. 3.9 shows the transmission

and reflection coefficients moduli of mode (2,0) from its cut-off frequency. Fig. 3.10 represents

the transmission and reflection coefficients moduli of mode (0,1) from its cut-off frequency.
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(a)

(b)

Figure 3.9. Frequency evolution of the transmission coefficient T((2, 0), (2, 0)) (a) and the
reflection coefficient R((2, 0), (2, 0)) (b). (—)WFE method (- - -) Analytical method.
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(a)

(b)

Figure 3.10. Frequency evolution of the transmission coefficient T((0, 1), (0, 1)) (a) and the
reflection coefficient R((0, 1), (0, 1)) (b). (—)WFE method (- - -) Analytical method.

Because of the circumferential symmetry of the duct, there is no scattering from a mode

into another mode with different m order. Therefore, only modes with same circumferential

order exchange energy.

Conversion coefficients correspond to the off-diagonal terms of the transmission and reflection

matrices. Fig. 3.11 represents the conversion of the plane wave mode with mode (0, 1). Other

validations of the conversion between modes (2, 0) and (2, 1) are shown in Fig. 3.12.
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(a)

(b)

Figure 3.11. Frequency evolution of the transmission coefficient T((0, 0), (0, 1)) (a) and the
reflection coefficient R((0, 0), (0, 1)) (b). (—)WFE method (- - -) Analytical method.
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(a)

(b)

Figure 3.12. Frequency evolution of the transmission coefficient T((2, 0), (2, 1)) (a) and the
reflection coefficient R((2, 0), (2, 1)) (b). (—)WFE method (- - -) Analytical method.

The figures show a fair agreement between the WFE method and the analytical method.

It is also noted from Figs. 3.11 and 3.12 that conversion between the m-modes exists and

is maximal for the frequencies at which they become cut-on. This result matches well the

slight changes of the curves shapes in Figs. 3.8 and 3.9 near the cut-off frequencies of the

higher order modes.

It is also shown from the previous results that the scattering coefficients for liners made of

honeycombs depend highly on frequency. Maximal reflection is reached when the impedance
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is purely resistive . Honeycombs are designed to absorb sound in a particular frequency

range. Therefore, variation of the geometric parameters affects the liner performances.

• Effect of the geometric parameters on the liner efficiency

The liner efficiency can be evaluated through the calculation of the acoustic power at-

tenuation. In this section, the effect of the geometric parameters on the liner efficiency is

studied by varying one of the parameters at a time and leaving the others unchanged. The

effects of the porosity, thickness of the perforated plate and holes diameter are discussed. The

acoustic power attenuation Watt can be calculated from the scattering matrix as described

below [101, 102]:

Watt = 10 log(
Win

Wout

) (3.9)

Win refers to as the incident acoustic power, and is given in this case as follows:

Win = (Pinc)hYPinc (3.10)

where Pinc =
〈
...P

(1)+
mi ..., ...P

(2)−
mi ...

〉t
is the vector of modal pressures incident to the left and

right duct sections, h denotes the conjugate transpose and Y is the diagonal matrix defined

such as:

Y =

 Y11 0

0 Y22

 (3.11)

with Y11 and Y22 are the diagonal matrices with (Nmikmi)/(2ρ0ω) on the diagonals. Nmi

are the coefficients associated with the (m, i) (m stands for the circumferential mode order,

and i is the radial mode order) mode defined for a cylindrical duct as [103] :

Nmi = πa2J2
m(χmi)

(
1− m2

χ2
mi

)
(3.12)

and N00 = 1, where a is the radius of the duct, Jm is the Bessel function of the first kind of

order m and χmi is the ith root satisfying the hard wall boundary condition: J
′
m(χmi) = 0. .

Wout corresponds to the outgoing acoustic power from the left and right duct sections. In the

present work, the incident modes are assumed to have random initial phases. In this case,
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Wout is given as following [104]:

Wout = (Pinc)hdiag(ChYC)Pinc (3.13)

C is the scattering matrix defined in Eq. (2.37).

When calculating the Transmission Loss, the expression of the the incident acoustic power

W
(1)
in becomes [105]:

W
(1)
in = (Pinc

1 )hY11P
inc
1 (3.14)

with Pinc
1 =

〈
...P

(1)+
mi ...

〉t
is the vector of modal pressures incident to the left duct section.

Taken into consideration the random phases assumption, the transmitted acoustic power

W
(2)
out is given by [104]:

W
(2)
out = (Pinc

1 )hdiag(ThY11T)Pinc
1 (3.15)

Here, T stands for the transmission matrix. The Transmission Loss TL is finally given by:

TL = 10 log

(
W

(1)
in

W
(2)
out

)
(3.16)

Figs. 3.13, 3.14 and 3.15 show the effect of the porosity, plate thickness and holes diameter

on the acoustic power attenuation, respectively. Figs. 3.16, 3.17 and 3.18 show the effect of

the porosity, plate thickness and holes diameter on the Transmission Loss, respectively.

Figure 3.13. Effect of the porosity ϕ of the
perforated plate on the acoustic power atten-
uation of the lined duct part (–):ϕ = 1% ;
(- -):ϕ = 3% ; (. . .):ϕ = 5% ;
(- . -):ϕ = 7%.

Figure 3.14. Effect of the thickness e of the
perforated plate on the acoustic power attenu-
ation of the lined duct part (–): e = 0.5.10−3

m ; (- -):e = 1.10−3 m ; (. . .):e = 2.10−3 m
; (- . -):e = 3.10−3 m.

78



Numerical modelling of the acoustical multi-modal scattering of ducts with industrial liners

Figure 3.15. Effect of the diameter d of
orifices of the perforated plate on the acoustic
power attenuation of the lined duct part (–):
d = 0.5.10−3m ; (- -):d = 1.10−3 m ;
(. . .):d = 2.10−3m ; (- . -):d = 3.10−3 m.

Figure 3.16. Effect of the porosity ϕ of the
perforated plate on the Transmission Loss of
the lined duct part (–):ϕ = 1% ; (- -):ϕ = 3%
; (. . .):ϕ = 5% ; (- . -):ϕ = 7%.

Figure 3.17. Effect of the thickness e of the
perforated plate on the Transmission Loss of
the lined duct part (–): e = 0.5.10−3 m ;
(- -):e = 1.10−3 m ; (. . .):e = 2.10−3 m ;
(- . -):e = 3.10−3 m.

Figure 3.18. Effect of the diameter d of
orifices of the perforated plate on the Trans-
mission Loss of the lined duct part (–): d =
0.5.10−3m ; (- -):d = 1.10−3 m ;
(. . .):d = 2.10−3m ; (- . -):d = 3.10−3 m.

It has been already shown that the frequency of maximal attenuation and maximal atten-

uation itself depend on the geometric parameters of the liner. The attenuation is maximal

when the liner’s impedance is purely resistive. Decreasing the perforated plate thickness and

increasing the orifices diameter lead to an increase of the maximal attenuation. The fre-

quency of maximal attenuation is shifted to the higher frequencies when porosity increases,

and decreases when plate thickness and orifices diameter increase. Furthermore, as expected,

it is noted that Transmission Losses are greater than attenuations. This is a predictable con-

sequence as Transmission Loss of the acoustic power includes reflection as well as absorption,
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contrarily to the attenuation which only characterises the absorption by the liner.

3.3 Sound propagation in ducts with porous lining

This section deals with the porous liners case. The surface impedance of a porous material

is dependent on the mode incidence angle, and an expression of the impedance can be only

calculated per mode of propagation [106]. Thus, it is more convenient to use the three

dimensional modelling of the entire porous domain rather than using the equivalent surface

impedance of the wall. The frame of the porous medium is assumed to be rigid, and the

Johnson-Champoux-Allard equivalent fluid model is therefore used.

3.3.1 Equivalent fluid model of porous materials

Assuming that the frame of the porous medium is rigid, the porous material can be defined

using the Johnson-Champoux-Allard equivalent fluid model, which uses the complex effective

density and velocity. The wave equation is written as following [107]:

∇2p+ ω2 ρ̃

K̃
p = 0 (3.17)

where ρ̃ and K̃ are respectively the effective density and effective bulk modulus and are given

as:

ρ̃(ω) =
σϕ

iω

1 +
4iα2
∞ηωρ0

ϕ2Λ2σ2

1/2

+ ρ0α∞ (3.18)

and

K̃(ω) =
P0γ

γ − (γ − 1)

 8η

iωρ0PrΛ
′2

1 +
Λ
′2iωρ0Pr

16η

1/2

+ 1


−1 (3.19)

where σ is the fluid resistivity (ratio of the static pressure difference to the product of the

velocity and the thickness of the porous sample), ϕ is the porosity (ratio of the volume of fluid

contained in the pores to the total volume of the material), α∞ is the tortuosity (ratio of the
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length of the pore path to the distance between two pore points), η is the dynamic viscosity,

ρ0 is the density of the fluid, Λ is the viscous characteristic length (high frequency viscous

and inertial effects introduced by Johnson [108]), Λ
′

is the thermal characteristic length

(thermal exchanges between the material frame and the pore saturating fluid introduced by

Champoux and Allard [109]), P0 is the static reference pressure, γ is the ratio of specific

heats at respectively constant pressures and volumes defined as γ = Cp/Cv, and Pr is the

Prandtl number [110].

It is worth noting that ρ̃ and K̃ are complex and frequency dependent. The equivalent

density and equivalent bulk modulus are related to the effective density and effective bulk

modulus respectively by:

ρe =
ρ̃

ϕ
(3.20)

Ke =
K̃

ϕ
(3.21)

The sound celerity in the equivalent fluid ce is given by:

ce =

√
Ke

ρe
(3.22)

The complex wavenumber in the equivalent fluid model ke is then expressed as follows[111]:

ke =
ω

ce
= ω

√
ρ̃

K̃
(3.23)

Further, the mass and stiffness elementary matrices Me and Ke are respectively given by:

Me =

∫ ∫ ∫
Ωe

1

ρ̃c2
e

NNtdv (3.24)

Ke =

∫ ∫ ∫
Ωe

1

ρ̃
[∇N]t[∇N]dv (3.25)

where N is the column vector of shape functions Ni, [∇N] is the matrix of vectors ∇Ni and

Ωe is the volume domain of a single element.
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The surface impedance Zs(θj) of the equivalent fluid is given as follows [112]:

Zs(θj) = −iZc
ke
ke,n

cot(ke,nde) (3.26)

where Zc = (1/ϕ)ρ̃ce is the characteristic impedance of the equivalent fluid, de is the thickness

of the equivalent fluid, and ke,n is the component of wavenumber ke in the direction normal

to the walls and is given by:

ke,n =

√
k2
e −

(ω
c

sin θj

)2

(3.27)

with θj is the incidence angle of the jth mode and is expressed as:

θj = arccos

√1−
(
f cj
f

)2
 (3.28)

f cj is the cut-off frequency of the mode. The reflection coefficient from the porous layer to

the medium is further given by:

Rj =
Zs cos θj − ρ0c

Zs cos θj + ρ0c
(3.29)

3.3.2 Forced response of rigid ducts with a porous layer termina-

tion

In the current section, response of guided waves incident to porous interfaces is explored.

Let us consider a rigid duct ended by a porous material layer. The porous material layer is

backed by a rigid wall. The pressure amplitudes were first computed by the WFE method.

Two alternatives are here used:

(1) Replacing the porous layer by an equivalent acoustic impedance as in Eq. (3.26). The

reflection is calculated, and therefore a reflection condition is defined as a boundary condition

at the end of the duct.

(2) Three dimensional modelling of the porous domain, i.e. solution provided by the full FE

model of the lining using Eqs. (3.24) and (3.25) (See Fig. 3.19).
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• FE modelling of the porous material

The porous domain was discretised using cubic elements and linear interpolation func-

tions. The differentials of the shape functions with respect to x, y and z are expressed using

differentials with respect to the natural coordinates [77], and elementary mass and stiffness

matrices of the equivalent fluid are calculated. The matrices are finally assembled.

• Boundary conditions expression

The continuity of pressures and velocities at the interface air-equivalent fluid leads to: Φp
incQinc(N+1) + Φp

refQref(N+1)

Φv
incQinc(N+1) + Φv

refQref(N+1)

 =

 pl

−vl

 (3.30)

where superscript (i) refers to the ith cross section of the rigid duct part, N is the number

of segments composing the air-filled waveguide, Φp and Φv refer respectively to the pressure

and velocity block components of the matrix of eigenvectors calculated by the WFE eigen-

problem, pl and vl are pressures and velocities vectors corresponding to the left surface of

the equivalent fluid.

The boundary conditions expressions finally yield the following system allowing the calcula-

tion of amplitudes Qinc(1) and Qref(1):


µ−NQref(1) = −(De∗Φp

ref + Φv
ref )−1(De∗Φp

inc + Φv
inc)µNQinc(1)

Φp
incQinc(1) + Φp

refQref(1) = p0

(3.31)

where De∗ is the dynamic stiffness matrix of the equivalent fluid condensed onto its left side

(See Appendix C), p0 is the vector of imposed pressure and µ is the diagonal matrix of

eigenvalues corresponding to the incident modes.

• Validation by FEM

The WFE results were then compared to the FE solution of the harmonic analysis for the

entire duct model carried out by ANSYS. The Johnson-Champoux-Allard model is activated

for the porous material and the physical constants are input. It is worth noting that imple-

mentation in the ANSYS 14.5 release uses the effective terms as defined in Eqs. (3.18) and
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(3.19) and is not what a user would expect, as one should normally solve for the equivalent

terms (divided by porosity) [86].

A hard-walled duct with a 0.056 m×0.04 m rectangular cross section was considered. Thick-

ness of the porous layer is 0.01m. The properties of the porous material are: σ = 10000

N.s/m4, ϕ = 0.88, α∞ = 1, Λ = 129.10−6 m and Λ
′

= 198.10−6 m. Figs. 3.20 and 3.21

show the frequency evolution of the pressure amplitude in one point inside the duct submit-

ted to the (0,0) and (1,1) modes respectively. For the case of excitation by the mode (1,1),

the forced response was presented from 5000 Hz, since the wave is evanescent for the lower

frequencies.

Parameter Value
Air

Celerity of sound 340 m/s
Density 1 kg/m3

Duct
Width 0.056 m
Height 0.04 m
Porous

Layer depth 0.01 m
Resistivity 10000 N.s/m4

Porosity 0.88
Tortuosity 1

Viscous characteristic length 129.10−6 m
Thermal characteristic length 198.10−6 m

Table 3.3. Summary of the parameters used for the rigid duct ended by the porous layer.
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WFEM

FEMBoundary

Interface
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l

N
th
C
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Figure 3.19. Description of the Boundary Conditions problem.

Figure 3.20. Frequency evolution of the pressure magnitude in one point within a rigid
duct submitted to the mode (0,0) and ended by a porous layer : (×) WFE method+equivalent
impedance; (—) WFE method+FE boundary; (.) FE method.
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Figure 3.21. Frequency evolution of the pressure magnitude (from cut-off frequency) in one
point within a rigid duct submitted to the mode (1,1) and ended by a porous layer : (×) WFE
method+equivalent impedance ; (—) WFE method+FE boundary ; (.) FE method.

The above presented figures show a good agreement between the FE results provided by

the commercial software ANSYS and the proposed method. Furthermore, Fig. 3.21 shows

that some numerical issues could occur at particular frequencies when using the condition of

reflection by the equivalent impedance as defined in Eq. (2.40). Use of the FE model of the

porous material through the system (3.31) is beneficial to avoid the numerical singularities.

3.3.3 Acoustic scattering of a hard walled-porous domain transi-

tion in ducts

In this section, the scattering from a porous layer inside a duct is studied. Let us consider

the waveguide presented in Fig. 3.22. The porous medium is defined using the Johnson-

Champoux-Allard model. The elementary mass and stiffness matrices are assembled to obtain

the matrices of the porous part. The dynamic stiffness matrix of the porous domain is

calculated and condensed onto its left and right ends. Then, the scattering matrix is expressed

as in Eq. (2.37). The forced response is first calculated through the equations provided by

the WFE method [30]. The results are then compared to the full FE analysis by ANSYS.
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Dimensions of the cross section of the above-mentioned waveguide are 0.056 m×0.04 m.

Depth of the porous layer is 0.015 m. Same constants of the porous material equivalent

fluid model considered in the previous section were used. Figs. 3.23 and 3.24 show the

pressure magnitudes for a duct submitted to the pressure mode (0,0) at both ends, and a

duct submitted to the pressure mode (0,0) and ended by rigid wall, respectively.

Parameter Value
Air

Celerity of sound 340 m/s
Density 1 kg/m3

Duct
Width 0.056 m
Height 0.04 m
Porous

Layer depth 0.015 m
Resistivity 10000 N.s/m4

Porosity 0.88
Tortuosity 1

Viscous characteristic length 129.10−6 m
Thermal characteristic length 198.10−6 m

Table 3.4. Summary of the parameters used for the duct with a hard walled-porous domain
transition.

WFEM
FEM

WFEM
BC1

BC2

Figure 3.22. Description of the approach used to the study of the scattering by a porous
medium inside the duct.
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Figure 3.23. Frequency evolution of the pressure magnitude in one point within a duct
submitted to the mode (0,0) at both ends : (—) WFE method; (.) FE method.

Figure 3.24. Frequency evolution of the pressure magnitude in one point within a duct
submitted to the mode (0,0) and ended by a rigid wall : (—) WFE method; (.) FE method.

3.4 Conclusion

In this chapter, the acoustical scattering of honeycombs liners was first studied using an

equivalent surface impedance representation at the walls. An empirical frequency-dependent

88



Numerical modelling of the acoustical multi-modal scattering of ducts with industrial liners

impedance model was used. Damping due to the acoustic impedance was added for the lined

duct walls. Then, the scattering of porous materials was studied through a hybrid WFE/FE

method. An equivalent fluid model was used for the FE discretisation of the scatterer. The

proposed approach benefits from the coupling of the WFE method for the rigid parts and the

FE method for the lined parts. This allows the study of the scattering due to heterogeneity

of the media when it can not be represented by a local impedance. At this stage, propagation

in the presence of fluid flow has not yet been studied. In the next chapter, the acoustical

propagation inside periodic waveguides with uniform mean flow will be investigated.
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Chapter 4

Characterisation of guided acoustical

propagation with mean flow

4.1 Introduction

Ducts are usually lined with sound absorbing materials to reduce noise levels. A practical

example is the inlet of an aircraft engine [2, 46]. The impedance boundary condition allows

the determination of the modes travelling in the lined duct. However, mean flow effects in

ducts can not be neglected (Fig. 4.1). Duct modes are in this case obtained by resolution of

the convected Helmholtz equation with respect to the boundary condition.

This chapter is devoted to the study of the guided acoustical propagation with a uniform

mean flow. The convected Helmholtz equation is solved. The boundary conditions of the

lined duct are expressed, and the acoustic fields are derived. The weak variational formu-

lation of the problem is presented. Results of applying the WFE method to the convected

acoustical propagation inside periodic waveguides are compared to the analytical ones. Al-

though following is a simplification because a uniform flow is supposed, it can still be an

important model of a real lined duct .
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Figure 4.1. Mach number field near the exhaust duct’s jet of an aircraft engine at a partic-
ular engine regime[8].

4.2 Assumptions

To describe the propagation of the guided acoustical waves with flow, it is assumed that the

following approximations are valid:

• The perturbations are small and equations are linear in the acoustic quantities.

• The fluid is homogeneous, non-viscous and thermally non-conductive.

• The flow is subsonic and uniform (i.e. Mach number remains sufficiently small and flow

velocity components do not depend on the spatial coordinates).

• A harmonic time dependence (e−iωt) is supposed.

Furthermore, we suppose hereafter that the waveguides are periodic and do not present a

change in the cross-sectional dimension.
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4.3 Governing equations

4.3.1 Convected Helmholtz equation

Let U be the vector given by U = Ux with U is the flow velocity and x is the direction of

the flow. This flow consists of a uniform mean flow with small perturbations given by:

v̄ = Ux + v (4.1)

p̄ = p0 + p (4.2)

ρ̄ = ρ0 + ρ (4.3)

Under the above mentioned conditions, linearisation leads to the following equations [8]

∂
∂t

+ U
∂

∂x

 ρ+ ρ0∇v = 0 (4.4)

ρ0

∂
∂t

+ U
∂

∂x

v + ∇p = 0 (4.5)

∂
∂t

+ U
∂

∂x

 (p− c2ρ) = 0 (4.6)

where p, v and ρ0 stand for the pressure, velocity and density of the fluid. Combining Eqs.

(4.4), (4.5) and (4.6) yields to the convected Helmholtz equation (in dimensional form):

∂
∂t

+ U
∂

∂x

2

p− c2∇2p = 0 (4.7)

The Mach number M is defined as:

M =
U

c
(4.8)

92



Characterisation of guided acoustical propagation with mean flow

where c is the sound celerity in the air.

We consider a two-dimensional channel, with x-axis being the axis parallel to the walls of the

duct, and the y-axis the normal to the walls. A flow in the x direction is assumed. Dividing

by c2 and supposing a harmonic time dependence, Eq. (4.7) is rewritten in this case as follows

[113]:

(1−M2)
∂2p

∂x2
+
∂2p

∂y2
+ 2ikM

∂p

∂x
+ k2p = 0 (4.9)

4.3.2 Rigid duct modes

The pressure satisfies the Neumann boundary condition on the two rigid walls of the duct:

∂p

∂y
= 0 (4.10)

Mathematically, the duct is defined by the unbounded domain Ω = R× [0, h], where h is the

dimension of the duct in the y direction. Solutions of Eqs. (4.9) and (4.10) are:

p±j (x, y) = eik±j xψj(y) (4.11)

where: ψ0(y) =

√
1

h
; and ψj(y) =

√
2

h
cos

jπy
h

 for j ∈ N∗ (Details of resolution were

given in section 1.2.3).

The axial wave numbers associated to the mode j are defined as following:

k±j =
− kM ±

√
k2 −

j2π2

h2
(1−M2)

1−M2
(4.12)

The sign + means that the axial wave number is computed in the flow direction, while the

sign − means that the axial wave number is computed in the opposite direction of the flow.

Introducing

E =
kh

π
√

1−M2
(4.13)

and E0 = [E] the integer part of E, it is shown that when j ≤ E0, k±j is real and the mode
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is called propagative. The number of propagative modes is also an increasing function of the

Mach number M . When j > E0, the axial wave number is complex (purely imaginary only

if M=0 i.e. non convective case):

k±j =
− kM ± i

√
j2π2

h2
(1−M2)− k2

1−M2
(4.14)

In this case, p±j is exponentially decreasing when x −→ +∞ and is called an evanescent

mode.

Fig. 4.2 shows the pressure’s real part contours of a rigid channel submitted to the mode

j=2 at 8000 Hz and ended by a normalised impedance Zend=2 for M = 0 and M = 0.3.

Figure 4.2. Pressure’s real part contours for j =2, f =8000Hz, Zend =2, and (a): M =0
and (b):M =0.3 (Solution by the WFE method).

It is clearly noted from Fig. 4.2 that, for a rigid duct, flow does not have an effect on the

mode shape but on the axial pattern of wave propagation. Moreover, the cut-off frequency

is lowered from jc/(2h) without flow to
√

1−M2jc/(2h) with flow. Therefore, more modes

are likely to be cut-on with flow than without.

The group velocity ∂ω/∂kj is positive for the p+
j modes and negative for the p−j modes.
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Another effect of the presence of flow is the existence, when k ∈]
√

1−M2jπ/h, jπ/h[, of

modes p+
j which have a negative phase velocity ω/kj and a positive group velocity.

4.3.3 Ingard-Myers boundary condition

We propose to describe the general formulation of acoustic propagation in a two-dimensional

lined duct with uniform flow parallel to the x-axis with a constant velocity denoted U and

we suppose that the liner is locally reacting. With a grazing uniform mean flow, the lined

wall impedance is not defined directly at the wall but at a distance ϑy such that:

Z = lim
ϑy→0

p(x, ϑy)

vy(x, ϑy)
(4.15)

where ϑy is the thickness of a boundary layer much smaller than the acoustic wavelength and

much smaller than the transverse size of the duct h (See Fig. 4.3).

Figure 4.3. Illustration of the duct with notations for the uniform mean flow formulation.

The acoustic velocity vy normal to the wall may be given by means of the the normal

acoustic displacement ξy in the core of the flow (for y ≥ ϑy in uniform mean flow) and at the
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lined wall (y = 0) as following:

vy =

−iω + U
∂

∂x

 ξy for y ≥ ϑy (4.16)

vy = iωξy for y = 0 (4.17)

When ϑy tends to 0, the normal acoustic displacement ξy is continuous across the boundary

layer. Continuity of ξy and Eq. (4.5) lead to:

Z
∂p

∂nL
=
ρ0

iω

−iω + U
∂

∂x

2

p (4.18)

where Z is the acoustic impedance of the absorbing boundary.

This is the boundary condition for an absorbing boundary ΓL in presence of mean flow

and is called the Ingard-Myers condition [114, 115]. Ingard-Myers boundary condition was

widely used in engineering applications for lined duct with uniform flow. Nevertheless, this

boundary condition does not take into consideration the viscothermal effects near the wall.

Some authors discussed the validity of the Ingard-Myers boundary condition and proposed a

modified boundary condition taking into account the viscosity near the lined walls [116, 117,

118]. Renou and Auregan [117] introduced an additional parameter ε in the wall boundary

condition accounting for the viscous losses at the treated wall so that a modified Ingard-Myers

boundary condition is written as:

∂p

∂nL
=

ρ0

iZω

−iω + (1 + ε)U
∂

∂x

−iω + U
∂

∂x

 p (4.19)

ε is determined experimentally. Note that for ε = 0 the Ingard-Myers boundary condition is

re-obtained.

Use of the Ingard-Myers boundary condition hereafter is justified since we made the non

viscous fluid assumption [119].
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4.4 Variational formulation

We define the coordinate system (x1, ..., xn), and Ω a subset of Rn. We suppose that the mean

flow is in the x1 direction and that the duct is periodic and infinite in the same direction.

If we multiply the convected Helmholtz equation by a test function q and apply the Green

formula, then the weak variational formulation of the n-dimensional problem is written as

following [120, 121, 122]:∫
Ω

−∇q∇pdx+
1

c2

∫
Ω

(iωq + U∇q)(−iωp+ U∇p)dx

+

∫
∂Ω

q ∂p
∂n
− 1

c2
Unq

−iω + U
∂

∂n

 p

 dσ = 0

(4.20)

where

∇ =

(
∂

∂x1

, . . . ,
∂

∂xn

)t

and ∂Ω is the boundary of the domain Ω.

The third integration term can be reduced to

∫
ΓL

q
∂p

∂nL
dσ as the lined walls are normal to

the flow direction, with ΓL is the lined boundary and nL is the outward normal to the lined

boundary. This term can be expressed using the Ingard-Myers boundary condition followed

by an integration by parts as:

∫
ΓL

q
∂p

∂nL
dσ = −ρ0ω

2

∫
ΓL

q
p

iωZ
dσ − 2iωρ0U

∫
ΓL

q
∂

∂x1

 p

iωZ

 dσ

−ρ0U
2

∫
ΓL

∂q

∂x1

∂

∂x1

 p

iωZ

 dσ + ρ0U
2

q∂
∂x1

 p

iωZ

ΓL (4.21)

4.5 Discrete problem

The WFE method starts from modelling one segment of a waveguide with fluid elements and

extracting its mass and stiffness matrices. With mean flow, matrices can not be extracted
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directly from ANSYS’s Mechanical APDL as fluid elements do not support mean flow. The

dynamic stiffness matrix of the segment needs to be calculated to apply the WFE method.

4.5.1 Dynamic stiffness matrix of the rigid duct

When considering the free wave propagation with flow, terms of the dynamic stiffness matrix

D = K− ω2M of the rigid duct part can be calculated using Eq. (4.22) :

De
ij =

∫
Ωe

−∇Ni∇Njdx+
1

c2

∫
Ωe

(iωNi + U∇Ni)(−iωNj + U∇Nj)dx (4.22)

with:

De
ij: are the elementary dynamic stiffness matrix terms; 1 ≤ i ≤ 2n and 1 ≤ j ≤ 2n where n

is the dimension of the problem,

Ni: are the shape functions [123],

∇Ni = J −1∇⊥Ni (4.23)

with J is the Jacobian matrix [77] and ∇⊥ stands for the derivatives with respect to the

natural coordinates [124].

The matrix De is the contribution from the element to the global assembled matrix D. The

elementary matrices are then assembled and the global matrix is obtained. The transfer

matrix S is then calculated using the square blocks of the matrix D.

4.5.2 Dynamic stiffness matrix of the lined duct

The elementary dynamic stiffness matrices corresponding the lined duct part are calculated

by adding the damping term for the nodes belonging to the lined boundary.

(De
c)ij = De

ij − ρ0ω
2

∫
Γe
L

Ni

Nj

iωZ
dσ − 2iωρ0U

∫
Γe
L

Ni

∂

∂x1

 Nj

iωZ

 dσ

−ρ0U
2

∫
Γe
L

∂Ni

∂x1

∂

∂x1

 Nj

iωZ

 dσ + ρ0U
2

Ni

∂

∂x1

 Nj

iωZ

Γe
L

(4.24)
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The dynamic stiffness matrix of the liner is then calculated through the assembly of the

elementary matrices and condensed onto its left and right edges. The scattering matrix is to

be calculated as was detailed in chapter 2.

4.6 Analytical computation of the scattering matrix

We consider the problem of the acoustical propagation in an infinite 2D lined duct with

uniform flow, and we make dimensionless as following:

p
′
= p/(ρ0c

2) , k
′±
j = k±j h

ω
′
= ωh/c , Z

′
= Z/(ρ0c)

x
′
= x/h , y

′
= y/h

h is the transverse dimension of the duct, ρ0 is the density of the fluid and c is the celerity

of the sound in the fluid.

In what follows, ′ is dropped for the sake of convenience. We consider a 2D channel with a

rigid upper wall and an acoustic lining on its lower wall as shown in Fig. 4.4. The x-axis is

the axis parallel to the walls of the duct and the flow direction, and the y-axis is the normal

to the walls.

The displacement potential φ is defined such as:

p = −

iω +M
∂

∂x

2

φ (4.25)

Figure 4.4. Illustration of the lined channel.
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The displacement potential obeys to a convective wave equation (in dimensionless form):

iω +M
∂

∂x

2

φ−∇2φ = 0 (4.26)

Solution of Eq. (4.26) in the rigid duct can be written by means of orthogonal eigenfunctions

ψj as follows:

φ(x, y) =
∞∑
j=0

ψj(y)Xj(x) (4.27)

ψj =

 1 if j = 0
√

2 cos (αjy) if j 6= 0
(4.28)

αj = jπ are the transversal wavenumbers, and:

∫ 1

0

ψi(y)ψj(y)dy = δi,j (4.29)

where δi,j is the Kronecker index 1.

On the lined wall the boundary condition is:

∂φ

∂nL
=

1

iZω

iω +M
∂

∂x

2

φ (4.30)

Note that Eq. (4.30) is the Ingard-Myers boundary condition with dimensionless convention

of the variables.

We note Dt =

iω +M
∂

∂x

.

Eq. (4.26) is projected over the basis of orthogonal functions ψj(y):

∫ 1

0

D2
tφψj(y)dy −

∫ 1

0

∂2φ

∂x2
ψj(y)dy −

∫ 1

0

∂2φ

∂y2
ψj(y)dy = 0 (4.31)

We aim to reduce the order of derivation of the third term of Eq. (4.31) from 2 to 1 in order

to use the Ingard-Myers boundary condition. Rewriting the third term of Eq. (4.31) using

1δi,j = 1 if i = j and δi,j = 0 if i 6= j
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an integration by parts gives:

−
∫ 1

0

∂2φ

∂y2
ψj(y)dy = −

[
ψj(y)

∂φ

∂y

]1

0

+

∫ 1

0

∂φ

∂y

∂ψj(y)

∂y
dy (4.32)

The first term of Eq. (4.32) is given by the boundary conditions:

∂φ

∂y
|y=1 = 0 (4.33)

ψj
∂φ

∂y
|y=0 = ψj(0)

∂φ

∂y
(0) (4.34)

The second term of Eq. (4.32) is calculated using an integration by parts:

∫ 1

0

∂φ

∂y

∂ψj(y)

∂y
dy =

[
∂ψj(y)

∂y
φ

]1

0

−
∫ 1

0

∂2ψj(y)

∂y2
φdy (4.35)

The first derivative of ψj is:
∂ψj(y)

∂y
= −αj sin(αjy) (4.36)

Hence: [
∂ψj(y)

∂y
φ

]1

0

= 0 (4.37)

The second derivative of ψj is:
∂2ψj(y)

∂y2
= −α2

jψj(y) (4.38)

Eq. (4.31) becomes:

∫ 1

0

D2
tφψj(y)dy −

∫ 1

0

∂2φ

∂x2
ψj(y)dy +

∫ 1

0

α2
jψj(y)φdy + ψj(0)

∂φ

∂y
(0) = 0 (4.39)

where

ψj(0)
∂φ

∂y
(0) = ψj(0)

1

iZω
D2
tφ(0) =

ψj(0)
1

iZω

−ω2φ(0) + 2iωM
∂φ

∂x
(0) +M2

∂2φ

∂x2
(0)

 (4.40)
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Finally, projection of (4.26) on the basis of rigid eigenfunctions leads to (in vectorial notation):

D2
tX +

1

iZω
CLD

2
tX−

d2X

dx2
+ ARX = 0 (4.41)

where

CL =


1
√

2 · · ·
√

2 2 · · ·
...

...
. . .

 and AR =


α2

0 0 ·

0 α2
1

...
. . .

.

In the lined part, Eq. (4.41) is arranged as following:

M1
d2X

dx2
= M2

dX

dx
+ M3X (4.42)

with

M1 = (1−M2)I−
M2

iZω
CL

M2 = 2iωMI +
2M

Z
CL

M3 = AR − ω2I +
iω

Z
CL.

Eq. (4.42) can be rewritten as follows :

d

dx

 X

Π

 =

 0 I

M−1
1 M3 M−1

1 M2

 X

Π

 (4.43)

where Π = dX/dx. The wavenumbers KLm of the lined duct part are calculated by means

of the eigenvalues λm of the Eq. (4.43) matrix as KLm = iλm. The associated eigenvectors

are split in two sets following the sign of =(KLm) and regrouped in matrices (V+ and V−)

[5]: V+ for =(KLm) < 0 and V− for =(KLm) > 0. Vectors X and Π can be then calculated

anywhere inside the lined part, and particularly, at the edges of the lining.

X(x) = V+
1 E+(x)B1 + V−1 E−(x)B2 (4.44)

where V+
1 and V−1 are the first n rows of V+ and V−respectively, E±(x) are the matrices

with exp(−iK±Lmx) on the diagonal, and B1 and B2 are waves amplitudes [5].
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Characterisation of guided acoustical propagation with mean flow

The continuity of X and Π at the lined part edges (interfaces with rigid parts) allows the

calculation of the scattering matrix [5, 125] by expressing the relation between the amplitude

of out-coming and incoming waves.

The acoustic displacement potential was used rather than the acoustic pressure because of

the regularity of φ near a sudden change in wall impedance contrarily to the pressure [5, 126].

Blocks of the scattering matrix in terms of acoustic pressure are easily given by means of

blocks of the scattering matrix in terms of displacement potential as mentioned by Renou

and Auregan [126].

4.7 Numerical validations

4.7.1 Rigid ducts

• Two dimensional case

An infinite rigid duct carrying a mean uniform fluid flow is considered. The problem is

two-dimensional, set in the xy-plane, where the x- (resp., y-) axis is parallel (resp., normal)

to the walls of the duct. Dimension of the duct following y is h = 0.08 m. A 0.003 m length

reduced two dimensional FE model was used for the WFE method. Frequency evolution of

the axial wavenumbers of forward going waves calculated by the WFE method and analytical

method is represented in Fig. 4.5 for a Mach number M = +0.2.
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Characterisation of guided acoustical propagation with mean flow

Figure 4.5. Frequency evolution of the axial wavenumbers real parts corresponding to the
forward going waves for h = 0.08 m and M = 0.2: (-) WFE method (×) Analytical method.

• Three dimensional case

Acoustical propagation inside an infinite rigid duct with a rectangular cross-section is studied

in this section. A subsonic uniform mean flow in the x direction is assumed. Width of the

duct is 0.056 m and height is 0.04 m (See Fig. 4.6). A 0.003 m length reduced FE model of

the duct is used for the WFE discretisation. Frequency evolution of the axial wavenumbers

calculated by the WFE method and analytical method is represented in Fig. 4.7 for a Mach

number M = +0.2. Fig. 4.8 shows the evolution of the axial wavenumber of the first order

mode along the width of the duct in the complex plan for a frequency varying from 50 Hz to

8000 Hz.

Figure 4.6. Illustration of the acoustical waveguide carrying the mean flow.
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Characterisation of guided acoustical propagation with mean flow

Figure 4.7. Frequency evolution of the axial wavenumbers real parts for a 0.056× 0.04 m2

rectangular cross-section and M = 0.2: (—) WFE method (×) Analytical method.

Figure 4.8. Evolution of the axial wavenumber of the first order mode along the width of
the duct in the complex plan when varying the frequency from 50 Hz to 8000 Hz (O): WFE
solutions (×): Analytical solutions ”Blue” forward running wave ”Red” backward running
wave.
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Characterisation of guided acoustical propagation with mean flow

For M = 0 (absence of flow), the axial wavenumbers are purely imaginary when the

modes are cut-off. That is to say that below a given frequency the wave vanishes after some

travelled distance along the x-axis.

For M > 0, below the cut-off frequency, the axial wavenumbers are complex and have, in

addition to the imaginary part corresponding to the decaying component of the wave, a neg-

ative real part which corresponds to an oscillating component of the wave (Eq. (4.14) and

Fig. 4.8). When they become cut-on (f > jc/(2h)
√

1−M2), the forward running waves, in

particular and only these, will have a positive group velocity ∂ω/∂kj and a negative phase

velocity ω/kj as long as the frequency remains lower than jc/(2h) (which is the cut-off fre-

quency without flow) i.e. k ∈]
√

1−M2jπ/h, jπ/h[ (branches in the yellow section in Fig.

4.9 ).

If M < 0, the same applies for the backward running modes with opposite signs for the axial

wavenumber real part, the group velocity and the phase velocity.

Figure 4.9. Evolution of the axial wavenumbers real parts for a duct carrying a mean
uniform flow with M = +0.5.
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Characterisation of guided acoustical propagation with mean flow

Altogether, it is shown that it is not the sign of kj but its radical in Eq. (4.12) that

corresponds to the direction of propagation. Furthermore, it is noted that when the flow

velocity increases, the wave length becomes larger (Eq. (4.12) and Fig. 4.2 ) and the cut-off

frequency decreases. This means that for a given frequency more modes are likely to be cut-

on as the flow velocity is more important. A raise of the transversal dimension h (dimension

following y) of the waveguide will lead also to increasing the number of the cut-on modes.

Although the axial pattern of the waves changes in presence of flow, the mode shapes remain

the same as without flow for a rigid waveguide (Fig. 4.2). Indeed , the same boundary

condition given in Eq. (4.10) applies whether or not the flow exists. This is not true for

a lined wall though, because the Ingard-Myers boundary condition defined in Eq. (4.18) is

used in this case.

4.7.2 Lined ducts

• Validation by the analytical method

We consider an infinite two dimensional channel with a rigid upper wall and a lined lower

wall (same problem as presented in Fig. 4.4) [127]. A subsonic uniform mean flow is assumed

in the direction parallel to the walls. The Mach number is equal to M = +0.1. A relatively

small Mach number is chosen to ensure pushing away hydrodynamic surface waves mentioned

by Rienstra in [128] to the high frequencies. Turbulence effects are assumed to be absent.

Dimension of the channel is h = 0.08 m. Lined length is 0.009 m and normalised impedance

of the acoustic lining is taken equal to Z =0.2. The fluid is supposed to be non-viscous so

that use of the Ingard-Myers boundary condition is justified for the study of the scattering

by the lined part of duct.

2D fluid elements with linear interpolation were used to model the WFE segments. Damping

due to the lining on the lower part was introduced. Assembled dynamic stiffness matrix of

the lined channel portion was calculated and condensed onto its left and right edges to find

an expression of the scattering matrix. The calculation of the scattering through the use of

the WFE method was compared to the analytical method. Figs. 4.10, 4.11 and 4.12 show

the scattering coefficients evolution of the same incident and scattered modes.
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Characterisation of guided acoustical propagation with mean flow

For all the following results, the Mach number is M = +0.1 (direction of flow from the left

side to the right side of the waveguide) and the scattering is calculated for waves incident to

the lined part following the same direction (incident waves coming from the left, transmission

from the left to the right and reflection of waves from the lined part to the left side).

(a)

(b)

Figure 4.10. Frequency evolution of the transmission coefficient (a) and the reflection
coefficient (b): incident mode order: j = 0, transmitted/reflected mode order: j′ = 0.
(—)WFE method (o) Analytical method.

Conversion between the modes is shown in Figs. 4.13 and 4.14 . Modes are represented

from their cut-off frequencies (See Table 4.1).
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Characterisation of guided acoustical propagation with mean flow

Mode order 0 1 2 3
Cut-off frequency 0 Hz 2115 Hz 4229 Hz 6343 Hz

Table 4.1. Cut-off frequencies of the first modes for a 2D channel height equal to 0.08 m
and a Mach number M = 0.1.

(a)

(b)

Figure 4.11. Frequency evolution of the transmission coefficient (a) and the reflection
coefficient (b): incident mode order: j = 1, transmitted/reflected mode order: j′ = 1.
(—)WFE method (o) Analytical method.
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Characterisation of guided acoustical propagation with mean flow

(a)

(b)

Figure 4.12. Frequency evolution of the transmission coefficient (a) and the reflection
coefficient (b): incident mode order: j = 2, transmitted/reflected mode order: j′ = 2.
(—)WFE method (o) Analytical method.
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Characterisation of guided acoustical propagation with mean flow

(a)

(b)

Figure 4.13. Frequency evolution of the transmission coefficient (a) and the reflection
coefficient (b): incident mode order: j = 1, transmitted/reflected mode order: j′ = 0.
(—)WFE method (o) Analytical method.
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Characterisation of guided acoustical propagation with mean flow

(a)

(b)

Figure 4.14. Frequency evolution of the transmission coefficient (a) and the reflection
coefficient (b): incident mode order: j = 2, transmitted/reflected mode order: j′ = 1.
(—)WFE method (o) Analytical method.

Each mode transmits and reflects into the same mode, and all the other modes but in

lower proportion. What is more, in presence of a uniform mean flow the reflection from the

lined part to one end is not any more the same as the reflection from the lined part to the

other end despite the symmetry of the geometry. This implies that the reflection matrices

and the transmission matrices corresponding to the square blocks of the scattering matrix

are calculated in the convective case depending on the direction of incidence being in the

same direction of the mean flow or opposite to it.
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Characterisation of guided acoustical propagation with mean flow

It should be noted that the number of truncated modes affects the solution. An appropriate

choice of truncation is to include same number of modes for both methods. The number

of truncated modes is identical in each duct region and is chosen according to the number

of cut-on modes in the rigid-walled duct at the maximal frequency [92]. The effect of the

evanescent modes on the scattering for the low frequencies is therefore taken into account.

• Effect of the flow on the acoustical scattering and attenuation

The flow effect on the scattering coefficients is investigated in the current section. To this

end, a two dimensional waveguide lined on its lower wall is considered with same dimensions

as presented in the previous section. The normalised impedance of the liner is Z = 0.2 . The

scattering coefficients are computed for different Mach numbers and both in the downstream

and the upstream directions (See Fig. 4.15 for the notations and Figs. 4.16 and 4.17 for the

transmission and the reflection coefficients respectively).

Figure 4.15. Illustration of the lined channel with notations for the transmission and re-
flection matrices.
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Characterisation of guided acoustical propagation with mean flow

Figure 4.16. Effect of the flow on downstream and upstream transmissions: incident mode
order: j = 1; transmitted mode order: j′ = 1.

Figure 4.17. Effect of the flow on downstream and upstream reflections: incident mode
order: j = 1; reflected mode order: j′ = 1.
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Characterisation of guided acoustical propagation with mean flow

First, it is noted that in the absence of flow the scattering coefficients are same whether

calculated in the downstream or upstream direction since the duct’s geometry is symmetric.

This is no more true in the presence of flow. Transmission in the downstream direction (same

as flow direction) is more important than transmission in the upstream direction (opposite to

the flow direction) while the downstream reflection coefficients are greater than the upstream

reflection coefficients. Furthermore, a raise of the flow velocity leads to an increase of the

transmission in the direction of flow and a decrease of the upstream reflection coefficients.

Transmission and reflection in the opposite directions are less affected by the raise of flow

velocity unless important Mach numbers are reached.

Efficiency of the liner can be evaluated through the acoustic power attenuation. The

attenuation is obtained by calculating the incoming and outgoing acoustic powers from both

duct sides as follows:

Watt = 10 log10

(
(Pinc)hYeP

inc

(Pinc)h(ChYsC)Pinc

)
(4.45)

where Pinc =
〈
...P

(1)+
j ..., ...P

(2)−
j ...

〉t
is the vector of modal pressures incident to the left and

right duct sections, h denotes the conjugate transpose, C is the scattering matrix defined in

Eq. (2.37) and Ye is the diagonal matrix defined as:

Ye =



(1 +M2)N0k
+
0

2ρc(k −Mk+
0 )

. . .

(1 +M2)Nn−1k
+
n−1

2ρc(k −Mk+
n−1)

(1 +M2)N0k
−
0

2ρc(k −Mk−0 )
. . .

(1 +M2)Nn−1k
−
n−1

2ρc(k −Mk−n−1)
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Ys is the diagonal matrix given by:

Ys =



(1 +M2)N0k
−
0

2ρc(k −Mk−0 )
. . .

(1 +M2)Nn−1k
−
n−1

2ρc(k −Mk−n−1)

(1 +M2)N0k
+
0

2ρc(k −Mk+
0 )

. . .

(1 +M2)Nn−1k
+
n−1

2ρc(k −Mk+
n−1)


where Nj are the normalisation coefficients.

The acoustic power attenuation calculated for different Mach numbers is presented in Fig.

4.18 .

Figure 4.18. Effect of the flow on the acoustic power attenuation.
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Characterisation of guided acoustical propagation with mean flow

It is shown that the attenuation decreases for larger Mach numbers. All modes cut-on at

8000 Hz were included in the calculation of the total acoustic attenuation. This means that

overall acoustic scattering effect becomes less important when the Mach number increases.

Attenuation peaks are also observed when a higher mode is cut-on. However, a homogenised

constant surface impedance is not representative of a realistic surface impedance equivalent

to a locally reacting acoustic treatment on the duct wall as it depends on the flow as well

as frequency. Therefore, combined effects of flow and impedance must be taken into account

when calculating the acoustic attenuation. Grazing air flow effect on the acoustic impedance

was emphasised through empirical formulas in literature [94, 99, 129, 130]. Most of the

empirical models show that a grazing air flow at one hole surface increases acoustic resistance

and decreases acoustic reactance. Kirby and Cummings model [94] representing a perforated

plate impedance and accounting for the flow effect will be used here. The total impedance of

a perforated plate backed by a cavity in the presence of flow can be then calculated. Following

Kirby and Cummings empirical model [94], the resistance and reactance of a perforated plate

are respectively given as following:

While 20% < ϕ < 27%, e = 10−3m or e = 1.5.10−3m, d = 3.10−3m , 1000Hz < f < 7000Hz,

pressure amplitude is very low and flow velocity does not exceed 70 m/s :

R =

√
8νω

ϕc

e

d
+

[
26.16

(e
d

)−0.169

− 20

]
v∗

ϕc
− 4.055

fe

ϕc
(4.46)

χ =
ω

ϕc

[
e+ ε

8d

3π

]
(4.47)

with:

ε = 1 if
v∗

fe
≤ 0.18

d

e

ε =

1 + 0.6
e

d

 e


−

v∗

fe
− 0.18

d

e

1.8 +
e

d


− 0.6

e

d
if
v∗

fe
> 0.18

d

e

where v∗ is the friction velocity characteristic of the inner viscous boundary layer of the fluid.
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Characterisation of guided acoustical propagation with mean flow

The remaining parameters are used with same notations as in chapter 3. Fig. 4.19 shows

the acoustic power attenuation calculated for M = 0.2 and a duct geometry same as was

presented above.

Figure 4.19. Acoustic power attenuation with application to the Kirby and Cummings
empirical impedance model integrating flow effect for M = 0.2, ϕ = 20%, e = 10−3m,
d = 3.10−3 and D = 10−2m.

It should be noted that previous results apply only for a mean uniform flow and would

not be valid for particular flow velocity profiles [131].

4.8 Conclusion

A good agreement of results provided by the Wave Finite Element Method and the analytical

approach has been reached for the study of the acoustical propagation inside rigid ducts.

Some important outcomes of adding a uniform flow arise such as the raise of the wave length

and the number of the cut-on modes. Modes behaviours were completely described for a rigid

waveguide and duct modes concept was shown to be the same as for the non-convective case.
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Characterisation of guided acoustical propagation with mean flow

Furthermore, the multi-modal reflection and transmission inside acoustical waveguides due

to a change in the impedance of the wall were also successfully predicted through the Wave

Finite Element Method. It was shown that flow has an effect on transmission and reflection.

Effects of flow velocity and orientation were therefore discussed. When the wall impedance

is not infinite, mode shapes are determined with respect to the boundary condition at the

wall which depends on the flow, namely the Ingard-Myers boundary condition for an inviscid

model. In this case, differences between the modes shapes for the convective and the non-

convective cases are to crop up particularly near the walls. A damping term should be added

to the cell matrices used in the Wave Finite Element approach to be able to study the duct

modes inside a lined region. Besides, as the WFE Method was successfully validated with

the analytical calculations for a two dimensional convective problem, a next aim would be

studying the scattering for three dimensional and more complex cross-sectional geometries.
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General conclusion

This work dealt with the guided acoustical propagation. The announced goal was to charac-

terise a waveguide in a way that the upstream and downstream transmissions and reflections

and acoustic attenuation could be predicted regardless of the inputs.

Generally, these problems are dealt with by a modal approach. The basic principle is to

define a set of functions (the modal basis) that satisfy Helmholtz equation. Each mode or a

combination of modes is a solution to the propagation problem. However, the solutions have

to satisfy the boundary condition at the wall. The boundary condition does not correspond

to a rigid wall condition anywhere since ducts could be modelled as waveguides with three

regions, two of them are hard-walled, with an impedance-walled region in between. Apply-

ing an analytical mode matching technique requires expressing these solutions in each duct

region. One must keep in mind that, aside from the geometrical limitation, calculation of the

transversal wavenumbers satisfying a non rigid boundary condition is generally done through

an iterative method which could lead to results with missing roots. Another approach was

proposed in this thesis and was to resort to a discrete problem. This took into account the

damping by the liner and its dissipative character to predict the acoustic quantities scattered

to the rigid parts whatever liner’s nature is and without the need of representing explicitly

the modes inside the lined region. The method proposed in this work did it well, since it

combined a Finite Element Method modelling of the scatterer with a Wave Finite Element

approach for the rigid parts allowing the computation of the pressure anywhere inside the

rigid waveguide parts with the least computational requirements. Admittedly, a well known

undesired issue arises when using the Wave Finite Element Method. That is the necessity

of inversion of ill-conditioned matrices in the computation procedure. The use of a Singu-

lar Value Decomposition, and even a truncated one, could still be not sufficient to ensure
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reliability. It was shown in the framework of this work that some scaling strategies had to

be performed, certainly not a direct inversion of the matrices at their very first forms. This

was proved to give good results when compared to results by the conventional approaches.

Mechanical APDL acoustic analyses were used for the forced responses with various imposed

conditions at the ends of a lined waveguide as a validation , while the analytical approach was

used for the validation of the scattering coefficients themselves. Each incident mode reflects

and transmits into a modal spectrum in different proportions. Significance of the conversion

between the modes was highlighted and therefore the dependency of the the scattering co-

efficients solutions on the modes truncation was shown to be not an artefact of the method

but a natural outcome.

It was shown that the proposed approach allows all modes orders to be fully studied being

a 3D and multi-modal approach. Some of the geometries treated in this thesis were maybe

too much simple but merely validation with the analytical approaches was intended. The

study was extended to the study of the acoustical propagation with flow though. The modes

behaviours were completely described for the rigid waveguides, particularly their physically

most distinctive property, the axial wavenumber. For rigid walls, we have a finite num-

ber of cut-on modes, with the possibility of being more numerous with flow than without,

and infinitely many cut-off (axially exponentially decaying) modes. For a wall with a finite

impedance, the study was not completely performed within this work. Obviously, differences

are much more likely to appear with flow than without. All modes decay exponentially but

some strongly are while others less. Apart from this difference in axial direction, there is

also a conspicuous difference in the radial direction. Most modes are present throughout the

duct, but some exist only near the wall. They decay exponentially in the radial direction

away from the wall. These modes are called surface waves. Some exist both in the convec-

tive and non-convective cases, but some only with mean flow, called hydrodynamic surface

waves. These are likely to exist as Mach number becomes larger. Moreover, The Ingard-

Myers boundary condition was used in this work for the lined walls in presence of flow as

the model was assumed to be inviscid, but many researchers have already been working on

it, and its validity is still controversial. It has been shown indeed that it is not very accurate

in the case of a propagation in the opposite direction to the flow. Furthermore, literature
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has provided several empirical models integrating the grazing air flow effect on the acoustic

impedance. It has been shown that a grazing air flow at one hole surface of a resistive layer

increases acoustic resistance and decreases acoustic reactance. Nevertheless, the remarkable

discrepancies between models have to be mentioned. This is explained by the fact that the

experimental studies and accompanying empirical models were performed using experimen-

tal techniques differing among their authors and with different imposed conditions such as

exclusive validity for particular Mach numbers, pressures amplitudes and limited frequency

ranges. The use of these empirical formulas preferring a model over another is too restricted

for limited conditions to be used in a general theoretical context unless tolerating errors for

wider intervals.

There are still some cases which could be studied as a recommended future work:

• Representation of wave shapes and wavenumbers for a wall with a finite impedance.

A comparison can be drawn with the rigid duct modes with a possible study of the

effect of variation of the impedance. Moreover, the above mentioned observations for

propagation with flow inside lined sections can be further investigated.

• Extension to the 3D cases for propagation with flow.

• Study of more complex liner configurations. This may include spliced liners, for which

scattering into different azimuthal mode orders and less attenuation than uniform lin-

ers with same impedance are expected, and liners with arbitrarily varying impedance

through the circumference or impedance strips in the axial direction.

• Study of the scattering for ducts with a sudden change in diameter: Mode matching

must be used at these sections as radial wavenumbers depend on the duct diameter.
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Appendix A

Expression of the symplectic transfer

matrix S

A waveguide segment is assumed to be discretised using the same nodal distribution at its

left and right edges, say n nodes for each edge, with no internal nodes inside the segment.

Then, relations between pressures and velocities vectors of a waveguide segment provide:

vl = Dllpl + Dlrpr (A.1)

vr = Drlpl + Drrpr (A.2)

where subscripts l and r stand for the left and the right edges of the segment respectively, p

and v are the pressures and velocities vectors and Dll,Dlr,Drl and Drr are the square (n×n)

blocks of the dynamic stiffness matrix of the segment.

Following developments aim to find a relation between the left and right state vectors utl =

[(pl)
t(−vl)

t] and utr = [(pr)
t(vr)

t]. Eq. (A.1) can be re-written as following:

pr = −D−1
lr Dllpl + D−1

lr vl (A.3)

Replacing pr by its expression in Eq. (A.3) into Eq. (A.2) leads to write:

vr = (Drl −DrrD
−1
lr Dll)pl + DrrD

−1
lr vl (A.4)
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Expression of the symplectic transfer matrix S

From Eqs. (A.3) and (A.4), we have:

 pr

vr

 = S

 pl

−vl

 (A.5)

where

S =

 −D−1
lr Dll −D−1

lr

Drl −DrrD
−1
lr Dll −DrrD

−1
lr

 (A.6)
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Appendix B

Reflection from an acoustic

impedance at the end of a waveguide

under a higher order mode

propagation condition

Calculation of the reflection from a termination impedance is detailed hereafter.

Let us suppose that one pressure mode propagates inside a rigid waveguide and that L is its

length . The waveguide is ended at x = L by an acoustic impedance ZL. The pressure wave

will be the sum of two waves travelling in the positive and negative x-directions:

p(x, y, z, t) =
(
Ae−ikxx +Beikxx

)
ψ(y, z)e−iωt (B.1)

where A is the amplitude of the left running wave and B is the amplitude of the right running

wave.

To simplify the maths, we will use then the variable (L − x) rather than x. Eq. (B.1)

becomes:

p(x, y, z, t) =
(
Ae−ikx(L−x) +Beikx(L−x)

)
ψ(y, z)e−iωt (B.2)
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Reflection from an acoustic impedance at the end of a waveguide under a higher order
mode propagation condition

The axial wavenumber kx is given by:

kx = k cos θ (B.3)

where k is the free-field wavenumber and θ is the mode incidence angle.

Using Euler’s equation [ρ0∂v/∂t = −∂p/∂x], one may obtain the particle velocity:

v(x, y, z, t) =
cos θ

ρ0c

(
Ae−ik cos θ(L−x) −Beik cos θ(L−x)

)
ψ(y, z)e−iωt (B.4)

where k is the free-field wavenumber, θ is the mode incidence angle, ρ0 is the density of the

fluid, c is the celerity of the sound in the air and L is the length of the waveguide.

The impedance of the wave can be then expressed as:

Z(x) =
ρ0c

cos θ

Ae−ik cos θ(L−x) +Beik cos θ(L−x)

Ae−ik cos θ(L−x) −Beik cos θ(L−x)
(B.5)

The wave impedance at x = L must be equal to the impedance of the termination:

ZL =
ρ0c

cos θ

(A+B)

(A−B)

=
ρ0c

cos θ

(1 +B/A)

(1−B/A)

(B.6)

The reflection coefficient Rj = (B/A) is expressed as:

Rj =
ZL cos θ − ρ0c

ZL cos θ + ρ0c
(B.7)

When using the non-dimensional variables convention,

Znormalised
L =

ZL
ρ0c

(B.8)

Eq. (B.7) is rewritten as following:

Rj =
Znormalised
L cos θ − 1

Znormalised
L cos θ + 1

(B.9)
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Reflection from an acoustic impedance at the end of a waveguide under a higher order
mode propagation condition

Given the reflection coefficient, the absorption coefficient can be further calculated. In several

previous works, the absorption coefficient was used to characterise and evaluate acoustic

performance of absorbing materials [132, 133, 134]. The absorption coefficient ζj is given by

:

ζj = 1− |Rj|2 (B.10)

ζj =
4<(Znormalised

L )

(1 + <(Znormalised
L ))2 + (=(Znormalised

L ))2
(B.11)
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Appendix C

Boundary condition expression for

porous terminations

Let us consider a periodic rigid duct filled with air with a porous layer termination at its right

end. The porous material layer is backed by a rigid wall. The rigid duct part is divided into

N segments. An equivalent fluid is used for modelling the porous material. The continuity

of pressures and velocities vectors at the interface air-equivalent fluid provides the following

relation:  Φp
incQinc(N+1) + Φp

refQref(N+1)

Φv
incQinc(N+1) + Φv

refQref(N+1)

 =

 pl

−vl

 (C.1)

where superscript (i) refers to the ith cross section of the rigid duct part, and pl and vl are

pressures and velocities vectors corresponding to the left surface of the equivalent fluid. The

following equation can be then written:

D∗(Φp
incQinc(N+1) + Φp

refQref(N+1)) = −(Φv
incQinc(N+1) + Φv

refQref(N+1)) (C.2)

where D∗ is the dynamic stiffness matrix of the equivalent fluid condensed onto its left side.

D∗ = Dll −DlrD
−1
rr Drl (C.3)

with Dll, Dlr, Drr and Drl are the square blocks of the dynamic stiffness matrix of the

equivalent fluid.
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Boundary condition expression for porous terminations

A relation between amplitudes Qref(1) and Qinc(1) can be then expressed:

µ−NQref(1) = −(D∗Φp
ref + Φv

ref )−1(D∗Φp
inc + Φv

inc)µNQinc(1) (C.4)

with µ is the diagonal matrix of eigenvalues corresponding to the incident modes.

Eq. (C.4) is combined with an equation resulting from the expression of the boundary

condition at the left end of the duct so that Qinc(1) and Qref(1) can be then easily determined.
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l’écoulement rasant et de la couche limite. PhD thesis, Université du Maine, LeMans,
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