Thèse soutenue

Dissipation d'énergie dans les verres d'oxydes

FR  |  
EN
Auteur / Autrice : Tanguy Damart
Direction : David RodneyAnne Tanguy
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 28/09/2017
Etablissement(s) : Lyon
Ecole(s) doctorale(s) : École doctorale de Physique et Astrophysique de Lyon (1991-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : Université Claude Bernard (Lyon ; 1971-....)
Laboratoire : Institut Lumière Matière
Jury : Président / Présidente : Catherine Barentin
Examinateurs / Examinatrices : Tanguy Rouxel
Rapporteurs / Rapporteuses : Anaël Lemaître, Benoît Ruffle

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

L'atténuation d'ondes à basse et haute fréquences dans les verres n'est pas encore bien comprise en grande partie car les phénomènes à l'origine de cette dissipation varient grandement en fonction de la fréquence. L’existence de structures complexes et organisation multi échelle dans les verres favorise l'apparition de temps de relaxation allant de la seconde à la femtoseconde et de corrélation prenant place de l’Angström à la centaine de nanomètre. A basse fréquence, une meilleur compréhension de ces phénomènes de dissipation serait bénéfique à de nombreux domaines. Par exemple, les multi-couches recouvrants les miroirs des interféromètres servant à détecter les ondes gravitationnelles sont réalisées à partir de verres d'oxyde (SiO2 et Ta2O5) qui sont une source majeur de dissipation. A haute fréquence, l'étude de la dissipation pose des questions théoriques sur le lien entre asymétrie locale et atténuation acoustique.Durant cette étude, nous avons réalisé une analyse approfondie de l'interaction entre ondes mécaniques et structure des verres en utilisant des techniques de simulations telle que la dynamique moléculaire. En partant de la synthèse de verres de SiO2 et Ta2O5, nous nous sommes appliqués à trouver l'origine structurelle de la dissipation aux différentes échelles de fréquence. A basse fréquence nous avons été capable de catégoriser les déplacements atomiques à l'origine de la dissipation en utilisant la théorie des états à deux niveaux. A haute fréquence, nous avons utilisé une technique de spectroscopie mécanique appuyé par un développement analytique pour montrer l'importance du désordre local dans l’existence de dissipation