Étude des processus physiques de la formation d'étoiles par effondrement gravo-turbulent

par Pierre Marchand

Thèse de doctorat en Astrophysique

Sous la direction de Gilles Chabrier.

Soutenue le 21-09-2017

à Lyon , dans le cadre de École doctorale de Physique et Astrophysique de Lyon , en partenariat avec Université Claude Bernard (Lyon) (établissement opérateur d'inscription) et de Centre de recherche astrophysique de Lyon (CRAL) (laboratoire) .

Le président du jury était Sylvie Cabrit.

Le jury était composé de Jérémy Blaizot, Benoît Commerçon.

Les rapporteurs étaient Jonathan Ferreira, Caroline Terquem.


  • Résumé

    La régulation du moment cinétique est l'une des questions les plus importantes dans la formation d'étoiles. Du nuage moléculaire à l'étoile finale, le système perd la grande majorité de son moment cinétique et plusieurs processus sont avancés pour l'expliquer. Nous nous concentrons sur la magneto-hydrodynamique (MHD) non-idéale, qui permet de décrire le couplage entre un champ magnétique et un fluide. Son efficacité pour réguler le moment cinétique dans des conditions réalistes a été montrée à plusieurs reprises. Dans un premier temps, nous développons un code qui calcule l'équilibre chimique d'éléments présents dans les premières étapes de la formation d'étoile. Ainsi, nous pouvons retrouver la valeur des coefficients définissant l'intensité de chaque processus de la MHD non-idéale. Nous nous intéressons ensuite à l'un d'entre eux, l'effet Hall, encore peu étudié dans ce contexte. Nous l'implémentons dans le code eulérien RAMSES, et l'utilisons pour quantifier son influence pendant un effondrement gravitationnel. Comme prévu par la théorie, l'effet Hall influence grandement la taille du disque protoplanétaire, dans lequel se forment les planètes, et crée des enveloppes de gas tournant en sens inverse du reste du système

  • Titre traduit

    Study of the physical processes involved in star formation by turbulent gravitational collapse


  • Résumé

    The angular momentum regulation is a hot topic in star formation. From the molecular cloud to th final star, the system loses most of its angular momentum, and several processes are proposed to explain this phenomenon. We focus on non-ideal magnetohydrodynamics (MHD), which describes the coupling between a fluid and its magnetic field. Its efficiency to regulate the angular momentum in realistic conditions has been shown in several studies. First, we develop a code that computes the chemical equilibrium of elements present in the early stages of star formation. We can therefore obtain the values of coefficients defining the strength of the phyical processes associated with non-ideal MHD. We then take interest in one of them, the Hall effect, still poorly studied in this context. We implement it in the eulerian code RAMSES, and use it to quantify its influence during a gravitational collapse. As predicted by theory, the Hall effect greatly influences the size of the protoplanetary disk, in which planets form, and creates envelopes of gas rotating backward compared to the rest of the system


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Claude Bernard. Service commun de la documentation. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.