Catalyseur de Fischer-Tropsch hautement sélectif, actif et stable utilisant des nanoparticules de fer encapsulées dans une zéolithe de type Silicalite-1
Auteur / Autrice : | Joffrey Huve |
Direction : | David Farrusseng, Yves Schuurman |
Type : | Thèse de doctorat |
Discipline(s) : | Chimie |
Date : | Soutenance le 20/03/2017 |
Etablissement(s) : | Lyon |
Ecole(s) doctorale(s) : | École doctorale de Chimie (Lyon ; 1995-....) |
Partenaire(s) de recherche : | établissement opérateur d'inscription : Université Claude Bernard (Lyon ; 1971-....) |
Laboratoire : Institut de Recherches sur la Catalyse et l'Environnement de Lyon (Villeurbanne, Rhône) | |
Jury : | Président / Présidente : Pascal Fongarland |
Examinateurs / Examinatrices : Anne Galarneau, Dominique Decottignies, Freek Kapteijn | |
Rapporteur / Rapporteuse : Anne Griboval-Constant, Magnus Rønning |
Mots clés
Mots clés contrôlés
Résumé
L'intérêt pour la synthèse de Fischer-Tropsch (FTS) est d'actualité. Elle permet la conversion de matière première (biomasse) en combustible liquide. Comparés aux catalyseurs à base de cobalt, ceux à base de fer présentent une désactivation rapide, une activité et une sélectivité faibles en produisant une quantité non désirable de CO2. Après plusieurs décennies d'études, l'origine de ces défauts reste méconnue. Les catalyseurs classiques sont généralement fortement chargés en fer (>70 wt.%) et composés de nombreuses phases empêchant l'établissement d'une relation structure-activité. Il est nécessaire de développer des catalyseurs contenant du fer plus actifs, plus sélectifs et plus stables par une approche rationnelle. La synthèse de nanoparticules de taille contrôlée (3.5 nm) encapsulées dans les murs d'une silicalite-1 creuse (Fe@hollow-silicalite-1) est présentée. L'encapsulation empêche le frittage pendant la synthèse de Fischer-Tropsch, permettant de garder une bonne dispersion du fer. Contrairement aux autres catalyseurs, le catalyseur Fe@hollow-silicalite-1actif ne produit pas de CO2. L'hydrophobicité de la silicalite-1 est très certainement à l'origine de la non-production de CO2 par inhibition de la réaction directe du gaz à l'eau. On démontre que le catalyseur Fe@hollow-silicalite-1convertit le CO2 en CO par réaction du gaz à l'eau inversée (R-WGS). Afin d'établir une relation structure-activité, des catalyseurs à base de fer de taille bien contrôlée sont synthétisés et caractérisés (MET, in-situ XANES, in-situ Mössbauer). Deux catégories de TOF suivant la taille des particules, ~10-2 s-1 pour les plus larges (>20 nm) et ~10-3 s-1 pour les plus petites, sont observées