Mécanismes de déformation de l'alliage polycristallin Ni-Mn-Ga induits par un entraînement mécanique et thermomécanique
Auteur / Autrice : | Naifu Zou |
Direction : | Yudong Zhang, Liang Zuo |
Type : | Thèse de doctorat |
Discipline(s) : | Sciences des matériaux |
Date : | Soutenance le 01/12/2017 |
Etablissement(s) : | Université de Lorraine en cotutelle avec Northeastern University (Shenyang) |
Ecole(s) doctorale(s) : | EMMA - Ecole Doctorale Energie - Mécanique - Matériaux |
Partenaire(s) de recherche : | Laboratoire : Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (Metz ; 2011-....) |
Jury : | Président / Présidente : Daniel Chateigner |
Examinateurs / Examinatrices : Daoyong Cong | |
Rapporteur / Rapporteuse : Daniel Chateigner, Daoyong Cong |
Mots clés
Mots clés contrôlés
Résumé
L’entraînement par application d’un champ externe s'est révélé être un moyen efficace d'améliorer la déformation induite par champ magnétique (Magnetic-Field-Induced Strain MFIS) dans les alliages Heusler de type Ni-Mn-Ga, en éliminant les variantes défavorables. Pour guider la procédure de l’entraînement, les mécanismes de l’entraînement des alliages à martensite 5M ou NM ont été étudiés, alors que ceux des alliages à martensite 7M ne sont pas entièrement clarifiés. Dans ce travail, les mécanismes de l’entraînement mécanique et thermomécanique ont été étudiés en analysant l'évolution de la microstructure et de l'orientation cristallographique au cours de ces processus. Tout d'abord, des caractérisations de microstructure et d'orientation cristallographique ont été réalisées dans l'état recuit sur l'alliage Ni50Mn30Ga20 préparé par solidification directionnelle. Cinq colonies transformées à partir d'un grain parent d'austénite ont été observées avec chaque colonie consistant en quatre variantes avec les relations d’orientation de Type-I, Type-II et composé transformation (TrF)-macle rapports. En supposant une charge de compression appliquée le long de la direction de solidification (SD), les cinq colonies pourraient être divisées en deux groupes par rapport au facteur de Schmid (Schmid Factor SF) des systèmes de démaclage de Type-I/Type-II TrF-macle des variantes dans la colonie : trois d'entre eux ont des SF élevés et désignés comme des colonies élevées de SF et les deux autres colonies de SF inférieurs. Ensuite, une compression unidirectionnelle a été effectuée sur l'alliage avec la charge appliquée le long de SD. En caractérisant l'évolution de la microstructure et le changement d'orientation cristallographique, les mécanismes de déformation ont été analysés. La déformation au stade précoce était principalement située dans certaines bandes initiées à partir des colonies de SF élevés et traversant les colonies de SF inférieurs. Le démaclage de Type-II/Type-I TrF-macle s'est produit principalement dans des colonies de SF élevés, ce qui a entraîné l'épaississement des variantes 7M favorables au détriment des variantes adjacentes. Les systèmes de maclage de Type-I/Type-II déformation (DeF)-macle et de réarrangement des variantes dans les colonies de SF inférieurs ont été activés, ce qui a entraîné la formation de nouvelles variantes 7M et NM. Les déformations correspondantes dans les colonies de SF inférieurs sont fortement coordonnées avec celles des colonies de SF élevés permettant la formation des bandes de déformation et l'accommodation de la déformation macroscopique. Au cours du stade avancé, le maclage de Type-I/Type-II DeF-macle et le réarrangement ont progressé pour coordonner la déformation macroscopique. Le processus de réarrangement inverse a été activé pour accommoder la déformation locale. Les nombres de colonies et de variantes sont considérablement réduits. Le chemin et le produit de la transformation martensitique ont également été fortement influencés par la déformation macroscopique imposée. Sous une petite charge, l'austénite transformée en martensite 5M suit à la fois l’OR Pitsch et une nouvelle OR plutôt que le martensite 7M auto-accommodée sous l’OR Pitsch. Avec l'augmentation de la charge appliquée, l'austénite s'est transformée presque simultanément en martensite 7M sous une nouvelle OR et en martensite 5M. Après la transformation martensitique, 5M s’est ensuite transformé en martensite 7M avec la diminution de la température sous la charge appliquée. La transformation martensitique a été modifiée par la contrainte externe en termes de produit de la transformation et de chemin de transformation pour accommoder la déformation macroscopique imposée. Ce travail offre de nouvelles idées sur les mécanismes de déformation des alliages Ni-Mn-Ga [...]