Thèse soutenue

Étude expérimentale et numérique d’écoulements réactifs en conditions hydrothermales : mélanges de fluides et précipitation de sels

FR  |  
EN
Auteur / Autrice : Gaëtan Lemoine
Direction : Hervé Muhr
Type : Thèse de doctorat
Discipline(s) : Génie des procédés et des produits
Date : Soutenance le 11/12/2017
Etablissement(s) : Université de Lorraine
Ecole(s) doctorale(s) : RP2E - Ecole Doctorale Sciences et Ingénierie des Ressources, Procédés, Produits, Environnement
Partenaire(s) de recherche : Laboratoire : Laboratoire réactions et génie des procédés
Jury : Président / Présidente : Elisabeth Badens
Examinateurs / Examinatrices : Denis Mangin, Christine Frances, Antoine Leybros, Hubert-Alexandre Turc
Rapporteurs / Rapporteuses : Elisabeth Badens, Denis Mangin

Résumé

FR  |  
EN

L’Oxydation HydroThermale (OHT) est l’une des technologies mises en œuvre pour le traitement des déchets liquides organiques radio-contaminés. Grâce aux propriétés de l’eau supercritique, l’OHT permet d’obtenir une minéralisation complète des composés organiques, avec des temps de séjour très courts, dans des réacteurs continus et compacts. Un modèle thermohydraulique couplé à un modèle de cinétique de combustion a été précédemment développé par le CEA et implémenté sur la plateforme de mécanique des fluides numérique ANSYS Fluent. Dans l’objectif d’améliorer la description des écoulements dans ces réacteurs, des mesures de masse volumique de mélanges ont permis d’ajuster puis d’implémenter un modèle en accord avec les données expérimentales. La problématique de la précipitation des sels minéraux a également été traitée au cours de cette étude, en mettant en œuvre une méthodologie expérimentale permettant d’acquérir des données de solubilité de composés modèles, et aussi de collecter et de caractériser les dépôts obtenus lors de la précipitation de ces composés dans un dispositif continu ad hoc. Ce travail expérimental a été poursuivi par l’implémentation de ces phénomènes de précipitation et de dépôt au sein du modèle numérique