Thèse soutenue

Étude des mécanismes de déformation de membranes polymères poreuses pour applications biomédicales
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Martin Donnay
Direction : Isabelle RoyaudMarc Ponçot
Type : Thèse de doctorat
Discipline(s) : Sciences des matériaux
Date : Soutenance le 19/10/2017
Etablissement(s) : Université de Lorraine
Ecole(s) doctorale(s) : EMMA - Ecole Doctorale Energie - Mécanique - Matériaux
Partenaire(s) de recherche : Laboratoire : Institut Jean Lamour (Nancy ; Vandoeuvre-lès-Nancy ; Metz)
Jury : Président / Présidente : Patrice Bourson
Examinateurs / Examinatrices : Laurent David, Noëlle Billon, Séverine Sigrist, Lucia Mancini
Rapporteurs / Rapporteuses : Laurent David, Noëlle Billon

Résumé

FR  |  
EN

Le «pancréas bioartificiel» (ou MAILPAN pour Macro-encapsulation d’ILots PANcréatiques) en développement par la start-up Defymed est un implant médical destiné aux patients atteints de diabète de type I. L’élément-clé de cet implant est une membrane poreuse qui a pour fonction d’assurer une certaine sélectivité moléculaire. De ce fait, une fissuration ou rupture de cette membrane entrainerait la perte de ses fonctionnalités. Il est par conséquent indispensable d’analyser et de comprendre le comportement mécanique de ce matériau afin de garantir son intégrité tout au long de la période d’implantation. Cette thèse s’inscrit dans le projet FUI MECABARP regroupant plusieurs PMEs et laboratoires lorrains et alsaciens.La membrane est un matériau unique obtenu par lamination de plusieurs matériaux polymères poreux. Elle se compose de films rendus poreux par le procédé de «track-etching» ainsi que de non-tissé consolidé par calandrage à picots. Cette thèse a pour objectif d’en étudier les mécanismes de déformation par l’utilisation de techniques de caractérisation et d’imagerie in situ à un essai de traction. Des campagnes expérimentales de micro-tomographie à rayons X et de diffusion de rayons X aux grands angles et petits angles ont été menées sur lignes haute énergie. Ces résultats sont complétés par des essais en laboratoire de microscopie électronique et spectroscopie Raman in situ à un essai de traction. La complémentarité des techniques choisies permet une approche multi-échelles (du millimètre à l’angström) dans le but d’obtenir l’étude la plus complète possible. Les faiblesses de la membrane d'un point de vue mécanique sont mises en avant et des solutions sont proposées. En parallèle, un essai mécanique en gonflement («bulge test») est développé dans l’optique de fournir un chemin de déformation équibiaxial plus proche des sollicitations réelles