Études analytique, numérique, et expérimentale du transport de particules dans des fractures à parois plates et ondulées
Auteur / Autrice : | Ahmad Hajjar |
Direction : | Michel A. Buès, Luc Scholtès |
Type : | Thèse de doctorat |
Discipline(s) : | Mécanique - Génie civil |
Date : | Soutenance le 06/12/2017 |
Etablissement(s) : | Université de Lorraine |
Ecole(s) doctorale(s) : | RP2E - Ecole Doctorale Sciences et Ingénierie des Ressources, Procédés, Produits, Environnement |
Partenaire(s) de recherche : | Laboratoire : GéoRessources (Nancy) |
Jury : | Président / Présidente : Anne Tanière |
Examinateurs / Examinatrices : Valeri V. Mourzenko, Jean-Régis Angilella, Armelle Jarno-Druaux, Constantin Oltean | |
Rapporteurs / Rapporteuses : Valeri V. Mourzenko, Jean-Régis Angilella |
Mots clés
Résumé
Le but de cette thèse est d'étudier le transport et le dépôt de particules solides dans les écoulements à travers les fractures. Dans un premier temps, l'écoulement monophasique à travers les fractures est étudié afin d'évaluer la validité de la loi cubique locale comme modèle de l'écoulement. Des canaux à parois sinusoïdales à géométrie variable sont utilisés pour représenter différents types de fractures. Un premier développement analytique montre que l'ouverture hydraulique de la fracture diffère de son ouverture moyenne lorsque la rugosité des parois est élevée. La méthode des éléments finis est ensuite utilisée pour résoudre les équations de continuité et de Navier-Stokes et comparer les solutions numériques aux prédictions théoriques de la loi cubique locale sur une gamme relativement étendue de nombres de Reynolds Re. Pour de faibles Re, typiquement inférieurs à 15, la loi cubique locale décrit raisonnablement l'écoulement, surtout lorsque la rugosité et le déphasage entre les parois sont relativement faibles. Dans un deuxième temps, les écoulements chargés de particules sont étudiés. Une approche analytique est d'abord développée pour montrer comment des particules distribuées dans un écoulement stationnaire et laminaire à travers une fracture peuvent être transportées sur de longues distances ou au contraire se déposer à l'intérieur. Plus précisément, une équation simple décrivant la trajectoire d'une particule est établie. Sur la base de cette équation, il est démontré que, quand l'inertie des particules est négligeable, leur comportement dépend directement de la géométrie de la fracture et d'un nombre adimensionnel W qui relie la vitesse de sédimentation des particules à la vitesse moyenne de l'écoulement. L'équation proposée est vérifiée en comparant ses prédictions à des simulations numériques de suivi de particules prenant en compte l'inertie des particules et résolvent complètement les équations de Navier-Stokes. Il est montré que l'équation est valide lorsque l'inertie du fluide est faible. Des diagrammes de régimes, permettant de prévoir le comportement des particules à travers la fracture sont proposés. Enfin, un appareil expérimental conçu dans le but d'effectuer une évaluation pratique du modèle analytique est présenté et les résultats préliminaires sont discutés. Les résultats expérimentaux préliminaires tendent valider le modèle analytique. De façon plus générale, les résultats obtenus à travers ce travail de thèse font progresser nos connaissances du comportement des petites particules transportées dans les écoulements de fractures. Potentiellement, ce travail devrait permettre d'améliorer notre prévision de la pollution souterraine, et peut avoir des applications dans le développement de nouvelles techniques de filtration de l'eau et de séparation des minéraux