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Chapter 1

General Introduction

In the last few decades, planet temperature has risen unusually fast, about 2◦C per

decade in the past 30 years [5], [6]. A group of more than thousand scientists concluded,

in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

(IPCC) [7], that human activities have driven the temperature up. A process known

as global warming or climate change. Eventually, since the beginning of the Indus-

trial Revolution when humans started burning fossil fuels and polluting the air, green

house gasses have risen sharply in the atmosphere and intensifying the greenhouse ef-

fect. Evidence for global warming includes extreme effects such considerable sea level

rise [8], fresh water polluting, decreased snow cover, rainfall events and ocean acidifica-

tion. Moreover, according to the NASA studies the extent of Arctic sea ice has declined

about 10% in the last 30 years. Future climate change will differ from a region to an-

other, some climate models predict harmful effects on ecosystems, biodiversity and the

livelihoods of people worldwide [9].

Against this background, a worldwide challenge against the global warming has been

engaged in Paris. On 30th November 2015, 190 states have participated in the historical

Conference of the parties (COP21) to limit global warming to 2◦C by 2100. The partici-

pating states have formulated some action plans to reduce their emissions of greenhouse

gases. Moreover, a progressive introduction of carbon price has been proposed to oblige

industrials to reduce their gas emissions, modify their behaviour while investing and

introduce green energies in the developing economies.

1
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Within this context, the European Commission has also adopted a climate-energy pack-

age which was revised in 2014 to set the new goals for 2030 listed bellow

• 40% reduction in greenhouse gas emissions compared to 1990 levels,

• At least a 27% share of renewable energy in the mix energy,

• At least 27% energy savings compared to the usual scenario.

These targets aim to help the European Union (EU) toward a low-carbon economy

and achieve a more competitive, secure and sustainable energy system and to meet its

long-term 2050 greenhouse gas reduction target.

The term Renewable Energy (RE) refers to a power that comes from resources which

are naturally replenished on a human time-scale. Advantages of the REs are numerous.

Firstly, they increase energy independence and security energy supplies by providing

local means of production, and secondly, they have a positive impact on the planet

because they are replacing fossil fuels, and thus, limiting the greenhouse gas emissions.

Within this context, biomass is regarded as one of the most dominant future renewable

energy sources [1] that needs to be used carefully and thoughtfully.

Biomass is all biologically-produced material based in carbon, hydrogen and oxygen. It

includes a wide variety of materials, wood, forestry residues, straw, manure, sugar-cane,

stover, green agricultural wastes, rice husk, . . . , sewage sludge, animal wastes and food

processing wastes. Thus, unlike the wind and solar energies, a continuous availability of

biomass energy can always be guaranteed.

In 1997, Gosh [10] estimated that recovery of organic waste and industrial effluents could

reduce 20% of global warming. Indeed, there exists many smart ways to make use of

biomass. It can either be used directly via combustion to produce heat, or indirectly

after converting it into various forms of biofuel as depicted in Figure 1.1.

Among the possible conversion processes for biomass, Anaerobic Digestion (AD) has

been evaluated as one of the most energy-efficient and environmentally beneficial tech-

nology for bioenergy production [11], [12], [13]. The reason why it is emerging spec-

tacularly all over the word and attracting the interest of many researchers that we are

among them.
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Figure 1.1: Biomass and waste conversion technologies (extracted from [1]).

Actually, AD is a promising process for waste recovery, environment protection and

power grid stabilisation. It is an important process to produce a valuable energy which

is named biogas, and a residue from the production that we call digestate. A schematic

overview of the main products of AD process and their optional use is presented in

Figure 1.2.

The biogas is a mixture of gaseous, generally composed of 45− 65% methane, 36− 41%

carbon dioxide, up to 17% nitrogen, < 1% oxygen, 32 − 169 ppm hydrogen sulphide,

and traces of other gases [14] in [15], which can be used in many domains and replace

the use of fossil fuel. Indeed, the biogas is classified as a renewable energy, which can be

either cleaned and upgraded to natural gas standards or used in gas engines to produce

electricity and heat energies, and thus, displace the polluting fossil fuel. Moreover, even

if the produced biogas is not used to produce any other type of energy and is simply

released into the air, the amount of unburned hydrocarbon emissions decreases when the

biogas is rich in methane [16]. Besides, by storing biogas we prevent potent greenhouse

gases from entering the atmosphere.

The digestate is the material that remains after the AD of biodegradable waste holds.

It is never a loss since it can be used as a sol conditioner, or to produce a nutrient for

plants to aide them for growth and inhibit them from diseases.
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Figure 1.2: Main products of anaerobic digestion and their optional use.

At laboratory or industrial scales, the AD process occurs inside an anaerobic digester

where degradation of organic material holds by a consortium of anaerobic bacteria.

The number, behaviour and interaction of the included bacteria have been extensively

questioned in the literature. The interest of these questions is first to understand the

process and then optimize it and make it worldwide adopted.

One way to improve the AD efficiency and performances is the design and scale up of

appropriate reactors [17], [18], [19], [20], [1]. Indeed, the reactor configuration and envi-

ronmental conditions (retention time, temperature, feedstock . . . stirring) influence the

dynamics and composition of the different groups of bacteria reponsible for the organic

materials degradation [13], [1]. Actually, the AD process is a multi-step process, as it

will be clarified further in the manuscript, and the subsequent steps of the process are

directly related to the solids retention time (SRT) in the digester [1] and to the manner

the micro-organisms are retained inside it [19]. Moreover, the microorganisms them-

selves and the biochemical reaction rates are influenced by the available temperature in

the digester. Naturally, at different levels of temperature, different species of bacteria

may be encountered. Consistently, in mesophilic digestion (30 to 38◦C), the species of

methanogens in the reactor are different from those found in the thermophilic diges-

tion (49 to 57◦C). Therefore, according to the user objectives, initial investment and

the nature and texture of the biodegradable waste (high/ low solids, pumpable (wet)/

stackable (dry) substrate), several technologies can be granted. We quote here below
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some commonly cited reactors in the literature, and for more details about the used

technologies (thermophilic, mesophilic . . . ) for AD applications and their performances

we orient the reader to [18], [19], [21], [1].

• Batch Reactor: the principle is simple, first the digester is filled with the biodegrad-

able materials, left until all the substrate has been degraded and then the digester

is emptied and a new cycle can begin again. The digestion time depends on the

temperature and the substrate type.

This technique has the advantage of being simple and robust, when the objective

is the production of biomass, the initial biomass is chosen small. The dead-time

necessary for initiation of the reaction after emptying and filling the tank, is the

disadvantage of this type of reactors.

• Semi-Continuous Fermenter (Fed/ Sequencing Batch Reactors): the process is

cyclic, the digester is filled gradually according to the progress of the reaction in

order to avoid organic overload and ensure optimal growth conditions. At the

end of the digestion phase, decantation allows to separate the liquid phase and

suspended biomass, a portion of the supernatant (about 10%) is removed during

the emptying stage [22].

SBR reactors try to maintain a relatively high biomass concentration in the di-

gester. This method is useful when the influent has an inhibitory nature.

• Continuous Bio-Reactor: the tank is fed at a constant rate and the digestat is

evacuated by a mechanical action. This technology is ideal for large sized plants.

Depending on the contact between the substrate and biomass or even where the

later is landed, the feeding mode and where the different anaerobic digestion phases

hold, the continuous bio-reactor fall into four general categories.

∗ Free Cells Digesters: these are the simplest reactors where the biomass is sus-

pended in the reactor, among these fermenters we find:

− Continuous Stirred Tank Reactor (CSTR ): herein a continuous mixing en-

sures the medium homogeneity, which promotes the contact between biomass

and substrate. The mixing in the digester can be done mechanically by a sys-

tem of blades, or by recirculating the contents of the digester. The biogas
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can be reinjected at the bottom of the reactor to avoid accumulation of par-

ticulate matter which in the long term may reduce the useful volume and

consequently the process performance reduces [22].

The drawback of CSTR reactors is the equality of biomass residence time

(BRT) and the hydraulic retention time (HRT) and thus the feeding rate

is limited in order to allow bacteria to grow [22]. Consequently, contact

digesters have been implemented as a solution for this drawback.

− Contact Digesters: in order to increase the inflow and outflow rates, the

amount of biomass in the digester is increased by decoupling the HRT of the

BRT. This can be done by putting at the output of the digester a system

to separate biomass from effluent and recirculating the concentrated biomass

[22]. The recovery of the particulate material may also be done using a

decanter or a membrane [23].

∗ Biofilm and Granules Digesters: a biofilm is a group of microorganisms sticking

to eachother to forme granules [14]. The microorganisms grow either on mobile

or fixed support, this allow high flow rates with no risk of leaching biomass.

These digesters are more robust in face of hydraulic shocks. Varieties of this

type of digesters are [22]:

− Fixed Bed Reactors: the reactor is filled with inert supports of varied nature

(glass, plastic, . . . ) that can be in various forms (strips, grid, ...) on which

biomass can settle and develop. The substrate is degraded while passing

through the filter made by the support and the bacteria colonising it.

These digesters require less mixing and are particularly robust for organic

overloads. However the risk of clogging the support by particulate materials

is quite important. Thus, applying down-flow and biogas recirculation is

frequently used to facilitate removal of excess biomass free (not bound to the

support).

− UASB reactors: the process, the most common is the UASB reactor (Upflow

Anaerobic Sludge Blanket), where the upward flow balance the tendency of

the aggregates to settle, and provides the suspension of biomass. A system

for separating liquid/ gas/ solid, situated on the top of the digester helps to

retain the biomass in the reactor. Recycling is used to stir and homogenise

the medium. The expanded bed reactors sludge EGSB (Expanded Granular
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Sludge Bed) are UASB digesters where the upward flow is significantly higher

which increases the sludge bed height [22].

∗ Mobile Support Reactors: they are reactors with mobile support are from the

latest generation of fixed biomass digesters (high retention rate of biomass al-

lows large feeding rates). They combine the advantages of attached biomass

digesters and free cells digesters (low risk of clogging and good homogeneity of

the medium).

The digester is filled with small-sized inert supports where biomass can grow.

The high surface/ volume report allows high flows and avoids clogging. If the

bed is expanded by less than 20% then it is ”expanded bed” and when the

bed expansion exceeds 30% it becomes ”fluidized bed”. Mobility of carriers is

increased in the fluidized beds which limits clogging and ensures efficient mixing.

∗ Two-Stage Reactors: the technology of two-stage digesters consists on operating

the two limiting steps (acidogenesis and methanogenesis1) in two separate reac-

tors in order to allow different operating conditions (different dilution rates) and

thus avoid reactor acidification and allow optimal methane production [19]. The

choice of a larger reactor for methanogenesis than acidogenesis reactor permits a

lower dilution rate which is more favourable for methanogenic bacteria growth.

Remark 1. [22] Whatever the chosen reactor type, the designer has to consider a key

parameter in biogas plants which is the dilution rate (D)

D =
The feed rate of the bioreactor (Q)

volume of the digester (v)

( 1

day

)
which also represents the inverse of HRT that should be sufficient to allow the different

bacterial species to grow.

Depending on the used technology (reactor type), it will be related to SRT, such that

the residence time of solids in the reactor is greater than the largest doubling time of

bacterial populations

SRTmin ≥
ln(2)

µmax

where µ is the bacterial growth rate. Failure of this constraint causes decrease of biomass

in the reactor, we speak then about leaching. Therefore, to avoid wash out of bacteria

the dilution rate (D) is constrained.

1The AD steps will be emplaned later in the manuscript.
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Another way to optimize and enhance the AD processes, for biogas production, can

be achieved via validated mathematical models reflecting the bacteria kinetics and the

complex transport phenomena occurring in the process [13], [1].

Indeed, modelling of the AD process has been extensively investigated in the literature.

Often, the resulted models are specific to a couple of criteria such the designer objectives,

waste nature and its composition, the used technology, collected data and its quality,

the possible experiments and changes in the operating conditions. We schematize the

commonly influencing parameters for AD modelling in Figure 1.3.

Mathematical Model

Solids content:  
High/ low

(dry/ wet)

Process 
technology:

Batch/ continuous/ 
semi-continuous/ 

single stage/ 
multistage

Limiting 
steps

Stirring:
Completely 
stirred/ plug 

flow/ 
recycling

Objective:  
Knowledge/

control

Solid 
composition

Operating 
conditions

Temperature:
Psychrophilic/ 
mesophilic/
thermophilic

Figure 1.3: General parameters influencing the AD modelling.

Tentatively, we split the AD models into two categories, those designed for process

knowledge and those dedicated to the process monitoring and control. Usually, the laters

consider only the rate liming steps of the process and are relatively simple compared

to the ones designed for process knowledge, which are complete, however, complex and

difficult to exploit for control [24].

In the present work, we do not aim to represent the chemical reactions occurring in the

AD process and their evolution with time, since this is largely available in the literature.

However, we target to give a brief historical review on AD modelling and expansion of
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the process steps in line with development of the different bacteria species. Neverthe-

less, we give first the definition of some steps (hydrolysis, acidogenesis, acetogenesis,

methanogenesis) that will be recalled in the short review.

• Hydrolysis: it is the step where polymers (macromolecule) are hydrolysed to

monomers (simple organic matter), the speed of degradation depends on the sub-

strate itself (by order from faster to slower: glucide, proteins and lipids, and

cellulose).

• Acidogenesis: herein, monomers are degraded to Volatile Fatty Acids (VFA2) and

alcohol.

• Acetogenesis: performed by acitogenic bacteria which transform the VFA into

acetic acid (CH3−COOH), hydrogen (H2) and dioxide carbon (CO2). We would

like to say that the responsible bacteria for this step produce H2 and is at the

same time inhibited by an excess of its concentration in the digester, that’s why

they live fixed to the methanogenic bacteria which consume the H2.

• Methanogenesis: here, methanogenic bacteria reduce the specific substrate into

methane.

The first attempts for AD modelling led to models describing only the limiting steps.

In 1968, Andrews [25] modelled the methanogenic fermentation by only the final step

methanogenesis. Then in 1973, Graef and Andrews included the acidogenesis step in

their macroscopic description of fermentation [22]. Later on, other researchers, Hill and

Barth (1977, [26]), Boone and Bryant (1980, [27]), Eastman and Ferguson (1981, [28])

added an initial hydrolysis step to their description, and obtained a three-step process.

The acitogenesis step was initially highlighted by Stadtman and Barker (1951, [29])

and introduced later to the process description by many researchers [22]. Over time,

inhibitions due to the competition of bacteria for the different substrates uptake was

taken into account [30] and led to the expansion of the process steps which made its

modelling very complex. Moreover, differences in the digested waste composition and in

the modelling objectives increased the number of model-based application which can not

be widely adopted (the reader is referred to [31] for more details about those models).

2The VFA are mainly composed of propionate, butyrate and valerate.
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In addition to that, it has been agreed in the literature that during a wide range of

operating conditions, the limiting steps are not always the same!

Besides, a key parameter in the AD description is the kinetic modelling of the substrate

uptake, biomass growth and product formation, that we may find more than fifty pro-

posed models in the literature (Monod, Blackman, Tessier, Haldane . . . Moser, Konak)

[32]. In the sequel, a group of experts in the AD processes (IWA Task Group for Mathe-

matical Modelling of Anaerobic Digestion Processes, 2002) has been in charge to develop

a standard model for the AD process and make it worldwide adopted. The elected model

names ADM1 (for Anaerobic Digestion Model N◦1).

In order to make the ADM1 a standard platform for AD simulation, it has been de-

cided to generalize the composition of waste. Therefore, it is measured by an unified

unit ”Chemical Oxygen Demand (COD)” and the process is supposed to occur in a

Continuous-flow Stirred Tank Reactor (CSTR),3 since this type of reactor is the most

used in practice. Moreover, to make the model widely applicable, all the main relevant

biochemical processes occurring in the AD process has been included, see Figure 1.4:

• Disintegration of composites,

• Hydrolysis of particulate such as carbohydrates, proteins, and lipids,

• Six substrate degradation processes together with their six specific biomass growth

and decay processes.

The novelty of the ADM1 in comparison with other previously developed AD models

(Vavilin [33], Angelidaki [34], Siegrist [35], Batstone [36], and the references therein), is

the inclusion of the disintegration step. Cellular solubilisation steps are divided into dis-

integration and hydrolysis which are extracellular biological and non biological processes.

In these steps, the complex organic matter is solubilised to carbohydrates, proteins and

lipids (polymers), organic composite and inert. The dead biomass is recycled in the

organic composite matter and undergoes again the disintegration step. Then, the model

has 4 biological steps and 7 bacterial species. The mission and interest of each bacteria

and step included in the ADM1 are explained in details in [2].

3The ADM1 is described for a CSTR but can also be used for batch and semi-batch mixed reactors.
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The physico-chemical process for stripping the gaseous compounds, hydrogen, methane

and carbon dioxide, is included to represent the production of biogas. It is defined as

non biological process and two types are treated in the ADM1 (liquid-liquid processes

(i.e. ion association/dissociation): they are so fast that they are considered as equilib-

rium processes and are presented by algebraic equations, 10 pairs are estimated to be

important, and liquid-gas processes: may be considered as a fast or medium transfer).

The pH calculation is based upon six additional physicochemical processes, describing

Figure 1.4: Anaerobic digestion model as implemented in the ADM1, including bio-
chemical processes: (1) acidogenesis from sugars; (2) acidogenesis from amino acids;
(3) acetogenesis from Long Chain Fatty Acids (LCFA); (4) acetogenesis from propi-
onate; (5) acetogenesis from butyrate and valerate; (6) aceticlastic methanogenesis; (7)

hydrogenotrophic methanogenesis (extracted from [2]).

the acid/base equilibria of: CO2/HCO3, NH+
4 /NH3, acetic acid/acetate, propionic

acid/propionate, butyric acid/butyrate and valeric acid/valerate:

ΣSC+ + ΣSA− = 0

where ΣSC+ is the sum of cation concentrations and ΣSA− represents the sum of anion

concentrations. Changes in cation and anion concentrations are introduced to address

the influence of positively and negatively charged ions present in the system on the

pH. They may be described by algebraic equations or modeled by differential equations.

Based on this feature, the state vector of the ADM1 can, respectively, have 26 or 32

state variables.
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The cellular kinetics are described by three expressions, growth, uptake, and decay. All

the extracellular steps are assumed to be first order. Moreover, growth is implicit in the

uptake and are modeled by Monod-type kinetics. All included equations in the ADM1

are reported in Appendix A.

Since the ADM1 was developed to be a general framework for AD process modelling, its

parameters were collected from different applications and the designers left some choices

for the users to adapt, and make the model suitable for their specific applications. An

example of adaptation of the ADM1 to anaerobic digestion of sludge at wastewater

treatment plant can be found in [37]. Of course many modifications, adaptation and

variations of the ADM1, for other specific applications, have been done later [38], [39],

[40], [41] and the references therein.

However, the ADM1 and its variations are complex models suitable for process simu-

lation, but not appropriate for process control and software sensors design [23], [24].

Indeed, the models complexity leads to the need of plenty input parameters which usu-

ally are difficult to obtain, and in addition to that, handling 32 differential equations

and identifying all process parameters can prove arduous [38], [24]. Moreover, according

to the digested substrate composition, only few parameters influence the model outputs,

and many reactions occur rapidly and do not affect the overall process dynamics [13].

Therfore, to overcome the model complexity issue, a synthetic mass balance model has

been developed in the AMOCO project (Advanced MOnitoring and COntrol System

for anaerobic processes) called AM2 (Acidogenesis Methanogenesis, 2 steps model) [4].

This model is suited for control and design of software sensors for the AD process. The

AM2 model is a two step model like those designed in [42], [43], [24], and the references

therein, which are all suited for the process control and monitoring. However, the AM2

model has the advantage of being compared to the ADM1, which is considrred as the

reference for AD modelling, in [22] and has shwon satisfactory results. The intefarce

between the AM2 and the ADM1 is provided in Appendix B. Besides, the AM2 has

been designed for both CSTR and fixed bed digester, and its parameters have been

identified by using experimental results covering a wide range of operating conditions

[4]. This particularly oriented our interest to the AM2 model that will be investigated

in Chapter 2.
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In addition to the required knowledge of the system, a good management and control of a

system require a good information about the internal state of that system. Particularly,

in biological processes, things seem to work fairly well and reasobably until some failures

or faults occur [44]. This may be due to the specific behaviour of the system itself or to

the presence of disturbances which can highly affect the process [45]. Thus, an obvious

need for an efficient control and monitoring of such systems arises.

When we look at the current status in monitoring of AD processes, it seems that it

should be possible to follow the evolution of almost all process variables (gas flow and gas

components, carbon dioxide, bicarbonate, . . . , chemical indicators, alkalinity, metabolic

activity, VFA, pH, microbial communities, biomass/suspended solids). A summury and

review of the different sensoring can be found in [46], [15], [47], [48], [49]. However,

the majority of sensors intended to measure the process key variables require, often,

complex equipment and careful maintenance, or need difficult sample preparation which

prevent their wide application [49]. Moreover, the plant costs climb quickly when some

specific sensors are selected, and thus, they are not desirable from industrial standpoint

[50]. Therefore, it is crucial to find a methodology which allows the monitoring of AD

applications while being cost-effective and easily adopted by industrials.

One remedy for this issue is the development of accurate and efficient software sensors

(also called observers). These observers are auxiliary dynamical systems that mirror

the internal state of the system. Actually, when we have a mathematical model of

the process, it is possible, under some conditions, to design an observer which provides

information about the unmeasurable state variables of the system by using its model

and its input and output signals (measurable variables of the system).

Usually, the observer design depends on many factors, such the model reliability, the

available measurements and their quality, and the inputs certainties. In the case of

linear systems, the observer design problematic has been extensively studied, vigorous

and confirmed methodologies do exist [51], [52], [53], [54], [55]. Whereas, for the non-

linear case there is no generalized methodology and it is still an open area for research.

Indeed, the available results are suitable for specific nonlinear structures [56]. This is

probably due to the restrictive conditions to be satisfied [57] and the difficulties involved

in dealing with the nonlinear systems [58]. Among the complex nonlinear systems for

which the observer design is still an open area, we find the AD processes which exhibit
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some very specific behaviours and are intrinsically unstable systems [44], [59]. There-

fore, considerable attention has been paid towards the development of observers for AD

processes.

Regardless to the neural network observers [60], [61], we may split the designed observers

for AD processes, and relying on the availability of a mathematical model, into two

classes. Observers designed based on full knowledge of the model, and others based

on its partial knowledge. Among the formers, we find the asymptotic observer [32]

which considers the kinetic functions as unknown functions and does a systematic linear

change of variables whose dynamics do not depend on that kinetic functions. Since the

asymptotic observer is widely referred, we briefly show how it works for a second order

system, but it can be easily extended for higher orders.

Let the system be described by

ẋ1 = u(x1in − x1)− kµ(x)x2

ẋ2 = (µ(x)− u)x2

(1.1)

where x1 represents the concentration of the substrate to be digested by the bacteria x2,

u and x1in are the system inputs. The state vector x = [x1, x2]T ∈ R2, and the scalar

function µ(x) is the unknown kinetic function. Let us suppose that x1 is measurable

and the objective is to estimate x2. Thus, we introduce the following variable [32]

z = x1 + kx2 (1.2)

whose dynamic is

ż = u(x1in − z) (1.3)

for which the asymptotic observer is given by

˙̂z = u(x1in − ẑ) (1.4)

where z is the estimate of ẑ. Once ẑ is obtained, x2 can be easily deduced by using

equation (1.2) and measurement of x1:

x2 =
1

k
(z − x1)
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The observation error is defined as e = z − ẑ, whose dynamic follows from equations

(1.3) and (1.4)

ė = −ue (1.5)

For a positive control (u > 0), it can be seen clearly from equation (1.5) that the esti-

mation error converges asymptotically to zero. However, when u = 0, the convergence

of the error to zero is not any more guaranteed and any initial estimation error per-

sists throughout the estimation procedure. In addition to the dependence of the rate of

convergence on the operating conditions (u), the asymptotic observer requires enough

measurable state variables [32], and provides poor estimates when the inputs or the pa-

rameters are uncertain [23]. Therefore, a more appropriate solution has been proposed in

[62], [63] when the time-varying bounds enclosing the uncertainties are known. Indeed,

the solution in this case is the use of interval observer which is composed usually of two

asymptotic observers, one to estimate the state upper bound x+(t) and a second one to

estimate the lower bound x−(t), and then the actual state will be enclosed in the enve-

lope drown by x−(t) and x+(t) provided that at the initial time x−(t0) ≤ x(t0) ≤ x+(t0).

Unfortunately, it happens sometimes to obtain a large envelope of the state and thus the

estimation becomes useless! Therefore, Bernard and his co-workers [64] have proposed

to launch a bundle of interval observers with different initial conditions and then select

the best (smallest) envelope. The advantage of the bundle observers is the improvement

of the asymptotic bounds and the ability to partially tune the rate of convergence due to

the use of additional measurements which are nonlinear functions of the state variables.

However, the interval observers are applied only when the dynamic of the estimation

error is cooperative4. Actually, the cooperativity property of a dynamic system is what

guaranties that when x−(t0) ≤ x+(t0) then ∀t ≥ 0, x−(t, x−(t0)) ≤ x+(t, x+(t0)). There-

fore, the interval observers can be applied only for a specific class of systems. In addition

to that, it is not easy to exploit the estimate intervals for control.

Another kind of observers, among others, can be designed when the system is partially

known. It is the observer based estimator [32], [65], [66], [43], wich is based on the use

of the estimated (considered to be measured) state variables to estimate the unknown

kinetic functions or the model parameters. The key idea of this observer is to consider

that the dynamics of the unknown parameters to be slow [23]. Its advantage is that in

some cases the rate of convergence can be tuned. However, this requires the calibration

4All elements of the Jacobian matrix of the system are positive.
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of many tuning parameters and the available data have to be sufficiently rich to design

the observer.

If a reliable model is available, one can design different types of observers depending again

on the application objectives and the available data. Among many designed observers

in the literature, we may cite firstly the extended Kalman filter (based on a linear

approximation of the nonlinear process model) which has been extensively applied to

the AD applications, [67], [32], [68], [69], [70], [71] and the references in [72], with success

and has even covered the situations where measurements of the process outputs arrive at

different sampling rates [73]. However, in some cases the Kalman filter may not possess

globall asymptotically stable error dynamics [74], and even if it does than, it is difficult

to prove the global convergence analytically [75]. Moreover, it has been prooved in [59]

that due to the highly nonlinear structure of the AD model and the number of input

variables, it becomes impossible to apply the extended Kalman filter when one wants

to estimate the biomass concentration (the system is not uniformly observable for any

input), which is a key state variable to estimate since it reflects the system health and

stability [50].

The high gain observer has also been, in the last decade, the object of growing interest in

the AD applications due to its fast convergence. We may mention the paper of Gauthier

and his co-authors [76], where the high gain observer has been applied successfully to

a second order AD model. To design the observer, the transformed canonical form is

performed, it is defined through Lie derivatives of the output which is a function of the

state variables. The convergence of the estimates to the model state variables is fast

enough, however the estimation is very sensitive to noise and the high gain observer

design for high order models may be complex. Indeed, it happens that the resulting

canonical form, for systems having dimensions greater than two, is not strictly linear

and thus involves exogenous inputs and a finite number of their derivatives [57], and

moreover such transformation is not always possible to perform [56]. In order to reduce

the sensitivity of estimates to noise, Lombardi and his co-autors [59] have proposed an

nonlinear observer for the on-line estimation of biomass and substrate concentrations in

presence of noise, where a certain diffeomorphism is applied to the model in order to

divide it into two partitions, a first system which is exponentially stable and a second

one which admits an observer. Then the high gain observer proposed in [76] is applied
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to the second subsystem, where the observer gain is a compromise between the observer

robustness and the convergence fastness.

In regard to observers applying the same transformation performed in [76], we may cite

the nonlinear observer designed in [44] for a forth order AD model. Due to the cascade

structure of the considered model and the decoupling of its subsystems, two cascade high

gain observers have been synthesized in order to detect and isolate some sensor faults.

The results have shown that it is possible to only detect and isolate a set of sensor errors

and specific faults.

For the same class of systems considered in [76], a cascad observer has been proposed in

[77] and [78] for a time delayed output. The proposed observer is composed of (m+ 1)

subsystems, the first one is a high gain observer which provides the delayed state and

the rest m subsystems are what the authors called ”predictors”, where the state of the

mth predictor is an estimate of the system actual state (m is the number of predictors

chosen such that stability conditions are satisfied). Although some satisfactory simula-

tion results, the assumed assumptions and the canonical transformation appear to be

the bottleneck.

Actually, the question of uncertainties, delayed measurements and disturbances must

arise in such applications, because they can hold for different reasons, such the response

time of sensors which depends on the relaxation of components and also their location

in the digester [50], hydraulic or thermodynamic disturbances, intoxications to heavy

metals and to antibiotics, . . . , overload of the system, whether the model has been thor-

oughly identiffied and validated! failure in measurement devices and effect of parasite

signals. Therefore, Kravarisa and his co-authors [45] have designed a nonlinear observer

to estimate the process state variables together with the process or sensor disturbances.

The gain of the proposed observer depends on the system state variables. It is calculated

from the solution of a system of singular first-order partial differential equations (PDEs).

The nonlinear observer has shown suitable results, but unfortunately, its response can

become easily unstable due to the initial conditions and the truncation orders of the

power-series solution algorithm for the PDEs. Moreover, performances of the designed

observer depend on its eigenvalues and their magnitude. Last but not least, the ex-

ponential stability of the system equilibrium point is required to design the proposed

observer.
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A new kind of nonlinear observers has been synthetized in [79] which is based on the

rewriting of the AD model by including dynamics of the methane flow rate (which is the

system output) to estimate the volatiles fatty acids in presence of model uncertainties.

The proposed observer is based on the modified structure of the model, it is composed

of a linear and a sigmoid injection of the error which enable the rejection of the model

uncertainties. However, the methodology for the parameters tuning is still to be revised.

Another type of observers has also been established in [80], [81], [82], and applied to

a class on chemical reactors in [82], [83]. They are called invariant observers and are

based on Lie group symmetries. In these observers, the invariance refers to the invariance

under a group action that it and some invariant functions and vector fields are required

to design the observer. The advantage of these observers is their fast convergence as it

has been shown in [84]. However, unfortunately, theirs design is not systematic, and for

high order systems it may prove difficult to compute the observer parameters. Therefore,

in the sequel, we will extend the invariant observer to higher system orders but under a

somewhat different form.

Moreover, we will propose in Chapter 3 a new and simple methodology to design nonlin-

ear generalised Luenberger observers for AD models. The methodology is based on the

use of the Differential Mean Value Theorem (DMVT), which allows the transformation

of the nonlinear error to a Linear Parameter Variant (LPV) system. Then, using the

LPV techniques, the stability conditions may be obtained in the form of Linear Matrix

Inequalities (LMIs). Besides, we will enhance the feasibility of LMI conditions by using

a new and suitable reformulation of the Young’s inequality.

In addition to the modelling and observer design for AD processes, which are still active

areas of research, the AD control, in biogas plants, is gaining an increased importance

in both academic and industrial communities. The main reasons for this fact are the

significant growth of bioenergy markets, and the beginning of new era where biogas

plants are regarded as a novel financial investment device by individuals as well as

institutional investors [85], [86]. Moreover, due to the ambitious climate-energy package

of the European Commission, many EU countries have defined quality standards for

biogas injection into the natural gas grid [12]. In addition to that, the produced biogas

must be rich in methane to fulfil requirements of the different gas appliances, and the

effluent must fulfil the environmental standards.
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In recent years, improvement of bioreactor performances and application of automatic

control to the bioprocesses have shown that their functioning can be optimized, and

an efficient biological pollutant removal can be achieved [87]. However, controlling the

AD processes is delicate, because they exhibit some very specific behaviours and are

intrinsically unstable systems [44], [59]. Moreover, when dealing with the AD processes

several factors are to be handled [88]. Among these factors, we may mention the highly

nonlinear behaviour of the system, load disturbances, system uncertainties, constraints

on manipulated and state variables and the limited online measurements information

[89]. Moreover, the AD process involves living organisms which are very sensitive to

the operating conditions and may be washed out or inhibited due to an accidental

toxic feeding, leading, in the worst case, to a definite stop of the digester [90]. In the

sequel, control of the AD processes has aroused much interest amongst the researchers

in automatic control.

Naturally, the control design varies with the application objectives. Usually, in bio-

gas plants, the controller is designed to satisfy one specific criteria. Either economical

(maximizing methane production) or ecological (minimizing COD concentration of the

effluent) or stability (VFA, VFA/TA5, propionate or dissolved hydrogen) criteria [91].

Moreover, the controller type depends on many factors. Such the controllability of

the process, accuracy of the monitoring, knowledge of the system and availability and

complexity of the considered model.

At the outset, controllers designed for the AD applications were of type on/off con-

trollers [92], [93], [94]. They were designed to control the pH of the digester in order

to prevent its acidification. Indeed, following an organic overload of the digester, acids

may accumulate and consequently the digester pH drops. In the sequel, functioning of

the survival micro-organisms gets disturbed and their growth may be inhibited. Later,

Proportional Integral Derivative (PID) controls including, P, PI, and PID, have been

found suitable for stabilizing the process. We may cite the control of bicarbonate alka-

linity in [42] and the control of pH and dissolved H2 concentration in [95], [96]. These

controls have been widely used, developed, and extended for other objectives in the lit-

erature. For example, we mention the adaptive PI control proposed in [97] to regulate

the bicarbonate concentration of the AD process. The adaptive PID and the cascade PI

controls designed in [98] and [99], respectively, to control the methane flow rate. The

5TA for Total Alkalinity
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cascade PID control proposed in [100] to satisfy multiple objectives (methane and VFA

concentration control). The PID controls have also been used conjointely with extremum

seeking control [101] and supervisory expert systems [102]. Despite the widespread use

of the PID controls and their easy implementation in industry, they are not very suitable

for varying feed conditions [103], [104] and are not robust face to multiple challenges.

Besides, optimal tuning of the PID gains may prove to be complex.

An other type of control designed for the AD processes, based on the availability of a

mathematical model, is the linearizing control, [32], [105]. The principle, herein, is to

synthesize a control law so that the evolution of closed loop system turns to be linear.

To illustrate how this controller works, we apply it to the system (1.1) to stabilize the

substrate concentration x1 around a desired reference x∗1. To do so, we compute the

control law so that substrate dynamic becomes

ẋ1 = λ (x∗1 − x1) (1.6)

where the parameter λ > 0 represents the convergence rate of the substrate x1 to its

desired reference x∗1. The control action, in this case, can be either x1in or u. Depending

on the selected action and by assuming that all variables are available, whether the

control x1in or u are computed by using equations (1.1) and (1.6):

x1in =
λ (x∗1−x1)+ux1+kµ(x)x2

u

u =
λ (x∗1−x1)−kµ(x)x2

x1in−x1

(1.7)

Although the linearizing control is a global approach, it relies of full knowledge of the

system parameters. Therefore, Mailleret et his coauthors [106] have proposed an adap-

tive version of it and prove the global asymptotic stability of the closed-loop system. A

variant of the linearizing control has been proposed in [107], where the convergence rate

of the controlled variable to its desired reference does not depend on the parameter λ,

for example

ẋ1 = u (x∗1 − x1) (1.8)
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and thus, the control action can be either x1in or u obtained by using the equations

(1.1) and (1.8):

x1in =
ux∗1+kµ(x)x2

u

u = kµ(x)x2
x1in−x∗1

(1.9)

If we compare the control laws given by equations (1.7) and (1.9), we quickly realize that

the number of required measurements decreases (no need of x1 measurement). However,

the convergence rate depends on the operating conditions (u) which makes it, generally,

slow [106].

To overcome model errors or in the absence of some model parameters, adaptive lineariz-

ing control has also been extenvely used in the literature [108], [109], [110], [111]. Besides,

when intervals of the model uncertainties are known a priori, robust linearizing control

based on interval observers have been proposed in [112], [113] and [114]. Although, these

controllers are global, there performances decrease as the size of the uncertainties inter-

val increases. Moreover, they do not explicitly consider the non-negativity constraints

on the manipulated variables [106].

In order to take into account positivity and boundedness constraints of the manipulated

control input (dilution rate), Antonelli and his coauthors [115], [116] have proposed

a nonlinear output feedback PI control law to stabilize the temperature of a certain

class of chemical reactors. Likewise, for the same class of systems and same objective,

Viel and his coauthors [117] have designed state feedback controllers that were able to

globally stabilize the temperature at an arbitrary set point in spite of uncertainties on

the kinetics. The same authors have proven that inclusion of robust state observer to

estimate the missing parameters for the control does not impair the nominal stabilization

properties of the controllers. But the study was only for lower bounds constraints on

the input.

Further, input to output linearising control based on the use of geometrical tools [118] has

been proposed in [88]. We insist to say that this control, is different from the linearizing

control discussed earlier ([32], [107], . . . ). Indeed, the approach, herein, is of the same

philosophy as the approach used to design the high gain observer. Where, under some

conditions, the differential geometry allows to transform the nonlinear model into a

partially or totally linear one, by means of a nonlinear state transformation. When only
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partial information of the state variables is available, the input to output linearising

control has been completed by the use of different types of state observers, ranging

from high gain observer [119] to Extended Luenberger Observer (ELO) [120]. Moreover,

to deal with the saturation constraints on the control input, antiwindup schemes have

been, repeatedly, introduced in the closed loop system [119], [121], [89], [122], [123],

[120]. Finally, to prove the practical stability of the system, the authors used the tools

stated in [124]. Suitable regulation results have been obtain by using the input to output

linearizing control. However, the control relies on an exact inversion of the AD model,

and thus the magnitude on the control action can be high under some disturbances with

certain frequency components. This means that we can not set a satisfactory tradeoff

between robust regulation and low magnitude control action [125].

Expert systems (rule based systems) have also been applied to the AD processes with

success [126], [127], [101], [128]. But, the stability of the closed loop can not be proved.

Similarly, relying on proper data, good results have been obtained by using neural net-

work controls [129], [130]. However, these controls can not be applied to a full scale

plant, because a huge data is needed to train the neural network, and very often, it is

not possible to obtain data covering all the range of operating conditions [91]. Other

advanced controllers have been designed for the AD processes, we refer the reader to

the excellent review [131].

Recently, Model Predictive Control (MPC) has been proposed to adapt the biogas pro-

duction according to a fluctuating timetable of energy demand [132]. In other words,

the set point (reference) of the system output (in this case biogas flow) varies with re-

spect to the requested energy from the power grid. Thus, the control input (feeding

rate) is computed by the MPC so that the system output follows the reference scenario.

This controller has been validated by Full-scale experiments and has shown promising

results. However, the analytic stability of the closed loop system can not be performed.

Therefore, using the same idea, we will propose in Chapter 4, a control scheme to track

a reference trajectory. As well as the timetable in [132], the reference trajectory will be

planed according to the user objectives. In order to account for the partial measure-

ments of the state variables, we will include the nonlinear observer that will be designed

in Chapter 3 in the controller design. The stability of the closed loop system will be

performed by using the Barbalat’s lemma [133], [134] and the tools used in Chapter 3,

DMVT, LPV and LMIs techniques.
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1.1 Aim and Objectives

The main objectives of the present thesis are

• Design of modelling framework which promotes the integration of biogas plants in

virtual power plants.

• Development of state observers (software sensors) for the AD models.

• Synthesis of adequate control strategies to stabilize the AD reactor and enhance

the biogas production.

1.2 Main Contributions of the Thesis

In order to promote the integration of biogas plants in the power grid, we have pro-

posed a modelling framework where we introduce additional control inputs [90], [135].

These added inputs reflect the addition of stimulating substrates which contribute in

the enhancement of both, biogas quantity and quality [22], [105], [66].

Moreover, due to the lack of monitoring that the AD applications at industry scale

experience [116], the highly nonlinear dynamics of AD models [59], and the exposition

of AD processes, in reality, to measurement and dynamic disturbances [45], we have

designed robust nonlinear observers to monitor the evolution of the internal state of

the digester [136], [137]. Actually, this is the main contribution of the thesis. We

have developed, indeed, new methods to design nonlinear observers, for the AD models,

providing non-restrictive synthesis conditions [138]. The idea is based on the use of

the Differential Mean Value Theorem (DMTV) which allows the transformation of the

nonlinear estimation error to a Linear Parameter Variant (LPV) system. Then, using the

LPV techniques we have synthesised the stability conditions in the form of Linear Matrix

Inequalities (LMIs). We stress out that the feasibility of the obtained LMI conditions was

enhanced due to a use of a suitable reformulation of the Young’s inequality. Moreover,

we have generalized the designed observers to the case of nonlinear outputs which is,

actually, the most encountered case in real plants. In addition to that, we have extended

the designed observers to the discrete time, because in real applications the observers

are usually driven by sampled data [139], [137].
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Finally, using the designed nonlinear observers, we have proposed a control strategy to

track a reference trajectory. Indeed, the biogas plant operator can plan for a desired

evolution of biogas production, over a time period, to satisfy the power grid demand.

This desired evolution is regarded as a reference trajectory for the system. Hence, we

have proposed to implement a state feedback control to track the reference trajectory.

To account for the lack of measurements, we have included an exponential nonlinear

observer in the control design. Therefore, to compute the controller and the observer

parameters, we have synthesized LMI conditions to ensure the stability of the closed

loop system (composed from the system, controller and the observer). We would like

to say that we have proposed two different methods to compute the controller and the

observer parameters. In the first one, we propose to compute them separately. While,

in the second one we compute the parameters simultaneously.

1.3 Outline of the Thesis

The present thesis is composed of four chapters organised as the following

• In chapter 1, we will present the elected model to work on. Then, we will perform a

slight modification to the elected model in order to render it suitable for the control

of biogas quantity and quality. After, doing the modification, we will analyse the

positiveness and the boundedness of the model state variables.

• In Chapter 3, we will present the designed nonlinear observers in a general way

for some specific class of nonlinear systems. Then, we will apply them to the AD

model provided in Chapter 2.

• In Chapter 4, we will synthesize observer-based control strategy which allows the

AD process to track a reference trajectory.
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Chapter 2

Anaerobic Digestion Modelling

2.1 Introduction

Anaerobic digestion (AD) is one of the most optimal ways to convert organic waste into

useful energy, such as methane-rich biogas and fertilizer products [11], [12], [13]. How-

ever, it is a complex biochemical process where combinations of chemical and physico-

chemical reactions occur in series and/ or in parallel, involving different survival species

which are responsible for degradation of the organic matter (proteins, fats and carbohy-

drates) into biogas. Hence, due to the complexity of the process it may, unfortunately,

exhibit some instability behaviour and fail in the production of an energetic biogas. The

reason why research related to the modelling and knowledge of the process for under-

standing the behaviour of the microbial organisms and improving it has a long track in

the literature. Indeed, the process modelling has been complicated as long as perception

of the different bacteria species and substrates has been. Therefore, an important step

in dealing with AD processes is to choose a certain description level of the process, that

is usually guided by the application objectives.

In our research, as already mentioned at the beginning of the manuscript, we target to

enhance the control of biogas production and more precisely the methane production

while, of course, preserving the plant stability. Thus, among all the existing AD models

in the literature, we have focussed our attention on those including the methanogenesis

step.

27
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A simple model as the one of Andrews [25] could be sufficient to predict production of

methan, however it was not selected because it does not include production of VFA,

which is often used as an indicator for the digester stability. Therefore, two-step models

have been found to be more suited for our application. Among the suitable two-step

models in the literature [32], [108], [42], [22], [24], the AM2 model [4] has been elected

because it was validated with riche data information extracted from a real plant, and

moreover it was compared to the AD benchmark model “ADM1” and has shown good

prediction results.

Therefore, we will present in the next section the AM2 model. Then, we will perform a

slight modification to the AM2 model in order to adapt it to some research objectives.

Later, we will explain how its parameters should be identified. Further, we will investi-

gate the positiveness and boundedness of the resulted model state variables and finally,

we will conclude the chapter.

2.2 AM2 Model

The AM2 model is a synthetic mass balance model which has been developed in the

AMOCO project [4]. This model is suited for control and design of software sensors for

the AD process. The AM2 model is a two step model like those designed in [42], [43],

[24], and the references therein, which are all suited for control and observer design.

However, the AM2 model has the advantage of being compared with sucesss to the

ADM1, which is considrred as the reference for AD modelling. The intefarce between

the AM2 and the ADM1 is provided in Appendix B.

In the AM2 model, acidogenesis and methanogenesis are supposed to be the rate limiting

steps:

1. Acidogenesis with reaction rate r1 = µ1x2

k1x1
r1→ x2 + k2x3 + k4co2 (2.1)

2. Methanogenesis with reaction rate r2 = µ2x4

k3x3
r2→ x4 + k5co2 + k6ch4 (2.2)
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where in the first step (2.1), acidogenic bacteria (x2) consume organic substrate (x1)

and produce VFA (mainly composed of acetate, propionate and butyrate) and co2. In

the second step (2.2), methanogenic bacteria (x4) consume the produced VFA (x3) for

growth and produce co2 and methane (ch4).

Assuming that the reactor is perfectly stirred (biomass uniformly distributed in the re-

actor), the organic substrate (x1) is available in dissolved form, the pH and temperature

(T ) range between 6 to 8 and 35◦ C to 38◦ C, respectively, and finally VFA (x3) behave

like pure acetate. Bernard and his co-authors [4], modelled the reactions (2.1) and (2.2)

by (for writing transparency, dependence of variables in time (t) will be omitted except

when it can lead to confusion)

ẋ1 = u(S1in − x1)− k1µ1(x1)x2

ẋ2 = (µ1(x1)− αu)x2

ẋ3 = u(S2in − x3) + k2µ1(x1)x2 − k3µ2(x3)x4

ẋ4 = (µ2(x3)− αu)x4

ẋ5 = u(Cin − x5) + k4µ1(x1)x2 + k5µ2(x3)x4 − qc(x)

ẋ6 = u(Zin − x6)

(2.3)

with, the growth rate functions µ1(x1) and µ2(x3) of type Monod and Haldane, respec-

tively: 
µ1(x1) = µ1

x1
x1+ks1

µ2(x3) = µ2
x3

x3+ks2+
x23
ki2

(2.4)

where the state vector x = [x1, x2, x3, x4, x5, x6]T and the control input u = qin
v (day−1),

qin is the feeding flow rate to the digester and v is the later volume (assumed to be

constant). Moreover, S1in, S2in, Cin and Zin are the input concentrations of the fed

waste. In addition to the states x1 − x4 included in the chemical reactions (2.1) and

(2.2), the states x5 (inorganic carbon) and x6 (digester alkalinity) have been added to

give more information about the digester and thus help for its monitoring and control.
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They are related by an on-line and easily done measurement (pH) as the following



bic = x6 − x3

co2 = x5 − bic

kb = [H+]bic
co2

pH = − log10(kb
co2
bic )

(2.5)

where kb is the acidity constant of bicarbonates (bic).

In equations (2.3), qc(x) represents the co2 gas flow rate



qc(x) = kLa[x5 + x3 − x6 −KHPC(x)]

PC(x) =
φ−
√
φ2−4KHPT (x5+x3−x6)

2KH

φ = x5 + x3 − x6 +KHPT + k6
kLaµ2(x3)x4

(2.6)

The methane (ch4) is supposed to be very lightly soluble, and is instantly found in the

gas phase, its flow rate is given by

qm(x) = k6µ2(x3)x4 (2.7)

Finally biogas flow rate is assumed to be the sum of co2 and ch4 flow rates

qg(x) = qm(x) + qc(x) (2.8)

All used parameters in the previous equations are defined in Table 2.1, and for a detailed

mathematical analysis of the model, the reader is referred to [23].

Both flow rate and quality of biogas are important. An energetic biogas is a biogas

which is rich in methane, and thus it is important to control percentage of methane in

the produced biogas. In the AM2 model, it is assumed that biogas is only composed of

co2 and ch4, and thus from the content of biogas in co2 we can deduce its content in ch4

and vice versa. From equations (2.3), (2.6), (2.7) and (2.8), we deduce the content of
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Table 2.1: Parameters of the AM2 Model.

Acronyms Definition Units
α Proportion of dilution rate for bacteria mmol/l
k1 Yield for substrate (x1) degradation g/(g of x2)
k2 Yield for VFA (x3) production mmol/(g of x2)
k3 Yield for VFA consumption mmol/(g of x4)
k4 Yield for co2 production mmol/g
k5 Yield for co2 production mmol/g
k6 Yield for ch4 production mmol/g
µ1 Maximum acidogenic bacteria (x2) growth rate 1/day
µ2 Maximum methanogenic bacteria (x4) growth rate 1/day
ks1 Half saturation constant associated with x1 g/l
ks2 Half saturation constant associated with x3 mmol/l
ki2 Inhibition constant associated with x3 mmol/l
kb Acidity constant of bicarbonate mol/l
KH Henry s constant mmol/(l.atm)
kLa Liquid/gas transfer constant 1/day
PT Total preasure atm
T Temperature Kelvin

biogas in co2, %co2 = qc(x)
qg(x) :

%co2 =

kLa

[
x5 + x3 − x6 −

φ−
√
φ2−4KHPT (x5+x3−x6)

2

]
kLa

[
x5 + x3 − x6 −

φ−
√
φ2−4KHPT (x5+x3−x6)

2

]
+ k6µ2(x3)x4

(2.9)

When the objective is to optimize operation of biogas plants in order to integrate them

in Virtual Power Plants (VPPs), both quantity (2.8) and quality (2.9) of the produced

biogas become key parameters to control. Therefore, we propose in the next section a

formal modelling framework, where we slightly modify the AM2 model in order to adapt

it to some research objectives.

2.3 Formal Modelling Framework

In the last few decades, AD process control has attracted much attention in academic

research. Generally, we find in the literature many papers dealing with the control of

biogas quantity, where repeatedly the dilution rate (waste flow rate divided by the di-

gester volume) is the controlled variable [108], [32], [140], [126], [87], [101], [22]. However,
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the dilution rate can range only in a small interval for stability and plant infrastructure

(waste storage capacity) issues. In addition to that, some biogas plants are constrained,

by internal rules, to treat a certain quantity of waste per day. Therefore, an alternative

solution to control biogas flow rate by addition of stimulating acetate to the feeding in-

fluent was proposed in [105]. Nevertheless, accumulation of accids may break down the

pH in the digester and causses its failure, especially when the digester buffering capacity

is low. Hence, usually addition of acetate is accompanied by an increase of the fed waste

pH (increase until pH = 8.5 [66]). This may be done by addition of bicarbonates to the

fed waste. However, often the way the pH is increased is not optimal since it does not

take into account the dynamics of inorganic carbon and alkalinity inside the reactor.

Regarding, the biogas quality, it is influenced by the buffering capacity of the digester.

Indeed, after addition of carbonate salts or strong bases to the digester, the co2 is

removed from the gas phase. Actually, it has been shown in [22], [42], [141] that an

increase of bicarbonate alkalinity in the digester leads to an increase of pH, this promotes

the dissolution of the gaseous co2 in order to elaborate equilibrium with the dissolved

co2 and thus enhance the biogas quality.

Combining the two ideas, from the literature, of adding stimulating acids to control

the biogas quantity and simulating bases to enhance the biogas quality, we slightly

modify the AM2 model to include the addition of stimulating substrates. Indeed, we

propose in the following to add more degree of freedom in control of AD process while

respecting the storage constraints and preserving the digester safety as depicted in Figure

2.1. Moreover, we insist to specify that addition of the stimulating substrates (acetate

C2H3O
−
2 ) and basses (sodium hydroxide NaOH) is included directly in the model in

order to account for its effect in all process state variables, and optimize it. Hereafter,

we give the mass balance equations required for modelling
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Figure 2.1: Scheme of a Proposed strategy for Controlling the Anaerobic Digestion
Process.

dv
dt = F1in + F2in − Fout

dx1v
dt = −k1µ1(x1)x2v + F1inS1in − Foutx1

dx2v
dt = (µ1(x1)v − αFout)x2

dx3v
dt = k2µ1(x1)x2v − k3µ2(x3)x4v + F1in(S2in + S2ad)− Foutx3

dx4v
dt = (µ2(x3)v − αFout)x4

dx5v
dt = k4µ1(x1)x2v + k5µ2(x3)x4v + F1inCin − Foutx5 − qc(x)v

dx6v
dt = F1inZin + F2inZad − Foutx6

(2.10)

where the state vector x = [x1, x2, x3, x4, x5, x6]T .
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We have

dxv

dt
= x

dv

dt
+ v

dx

dt

and let us define u1 = F1in
v , u2 = F2in

v and uout = Fout
v . Thus, when the digester volume

is kept constant (Fout = F1in + F2in), we obtain the following model

ẋ1 = −k1µ1(x1)x2 + u1S1in − uoutx1

ẋ2 = (µ1(x1)− αuout)x2

ẋ3 = k2µ1(x1)x2 − k3µ2(x3)x4 + u1(S2in + S2ad)− uoutx3

ẋ4 = (µ2(x3)− αuout)x4

ẋ5 = k4µ1(x1)x2 + k5µ2(x3)x4 + u1Cin − uoutx5 − qc(x)

ẋ6 = u1Zin + u2Zad − uoutx6

(2.11)

with µ1(x1), µ2(x3), qm and qc the same as defined in (2.4), (2.7) and (2.6), respectively.

Moreover, all used parameters are the same as those defined in Table 2.1 for the AM2

models.

2.4 About the Parameters Identification

Complexity and particularity of AD models give arise to certain considerations when

dealing with their parameters identification. Indeed, investigations on parameters iden-

tifiability have reported that the AD models are not practically identifiable [142], [105],

[32], [143], in other words a very good fit between the model and measurements can

be obtained with different values of parameters. Besides, the identifiability problem is

difficult to solve due to the number of parameters to be identified, and moreover real

experimental data is often corrupted by unknown noise characteristics [144]. Therefore,

identification becomes meaningful only when uniqueness of the obtained parameters can

be proved. Thus, facing the structural identifiability issue, Bernard and his coauthers

[4] have proposed a systematic step-by-step identification procedure. Actually, taking

advantage from the cascade structure of the model, the parameters were classified in dif-

ferent groups in order to identify them as independently as possible from each another.

Indeed, the structural identifiability was possible to prove due to the use of steady state

equations. We would like to say that even tough parameters identification was performed
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at the steady state, this did not prevent the model to reproduce properly the transitory

behaviour [4], [22], [23], [145].

The same identification procedure reported in [4] can be applied to the system (2.11),

where the first group of parameters to be identified is the kinetic parameters (ks1, ks2,

ki2, µ1, µ2) while the second group concerns the yield coefficients (ki, i = 1 . . . 6). We

will illustrate by an example of estimating the kinetic parameters how this methodology

is applied.

Usually, biological processes exhibit multiple equilibrium states, if we do not consider

the washout of bacteria steady state (x2 = 0 and/or x4 = 0), then the steady states of

the system (2.11) are given by the following equations



µ1(x1) = αuout (2.12a)

µ2(x3) = αuout (2.12b)

x∗1 = ks1
αuout

µ1 − αuout
(2.12c)

x∗2 =
1

αk1

(
u1

uout
S1in − x∗1

)
(2.12d)

x∗23 +

(
ki2 −

µ2ki2
αuout

)
x∗3 + ks2ki2 = 0 (2.12e)

x∗4 =
1

k3

(
u1

αuout
S2in −

x∗3
α

+ k2x
∗
2

)
(2.12f)

x∗5 = αk4x
∗
2 + αk5x

∗
4 +

u1

uout
Cin − qc(x∗) (2.12g)

x∗6 =
u1Zin + u2Zad

uout
(2.12h)

qm = αk6uoutx
∗
4 (2.12i)

where the solutions of equation (2.12e) are


x∗13 = 1

2

(µ2−αuout)ki2−
√

((µ2−αuout)
2ki2−4ks2α2u2out)

2
ki2

αuout

x∗23 = 1
2

(µ2−αuout)ki2+
√

((µ2−αuout)
2ki2−4ks2α2u2out)

2
ki2

αuout

(2.13)

where only the smaller solution is physically meaningful.

Suppose that some state variables are available for measurement and that the experi-

mental conditions cover a wide range of expected operating situations. Let us denote
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the mean value at steady state of x1, x3 by x1, x3, respectively. Thus, from equations

(2.4), (2.12a) and (2.12b) we have

1

uout
=

α

µ1

+ ks1
α

µ1

1

x1
(2.14)

equation (2.14) contains an operational parameter uout and the measurements x1 wich

are both known, thus using linear regression we identify α
µ1

and ks1. However, unfortu-

nately the parameters α and µ1 cannot be distinguished by using equation (2.14), thus

the parameter µ1 will be fixed from the literature [4].

Similarly from the same equations (2.4), (2.12a) and (2.12b), we obtain the following

relationship

1

uout
=

α

µ2

+ ks2
α

µ2

1

x3
+

1

ki2

α

µ2

x3 (2.15)

which by using linear regression and the estimated value of α from the previous step,

gives the parameters ki2, ks2 and µ2.

Following the same philosophy, all model parameters can be identified when the required

measurements are available. For more details related to this issue, we refer the reader

to [4], [22], [23], [145]. In what follows, we will use the parameter values provided in [4]

because we do not hold measurements for the proposed framework. However, in order

to obtain convenient results we will take u2 much more smaller than u1, and moreover

the term S2in + S2ad can be viewed as a controllable input S̃2in in the model (2.3).

2.5 Model Analysis

In this section, while analysing the model (2.11), we will consider that all model parame-

ters (ki, kLa,.. k6) are known and constant, and moreover, we suppose that the following

assumptions hold1

A1. All the input concentrations (S1in, S2in, Cin, Zin) have a maximum noted Xin,

such that S1in ≤ S1in, S2in ≤ S2in, Cin ≤ Cin, and Zin ≤ Zin.

1 We point out that the undertaken assumptions are logical and commonly assumed in biological
processes.
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A2. The added input concentrations S2ad, Zad are bounded: (0, 0) ≤ (S2ad, Zad) ≤

(S2ad, Zad)

A3. The control variables u1 and u2 are positive and thus:

∀T > 0, ∀t ≥ 0,
∫ t+T
t uout(τ) dτ ≥ 0

A4. The vector of initial conditions belongs to the positive orthant: x(0) ∈ R6
+ and

moreover x1(0) ≤ S1in

2.5.1 Positiveness of state variables

The state vector x in equations (2.11) represents, physically, chemical concentrations

which have to be positive. Thus, we have to prove mathematically the positiveness of

x(t). For this end we recall the following definition and theorem:

Definition 1. Positive System

A dynamic system ẋ(t) = f(x(t), u(t)) is a positive system if, for any admissible input

u(t) the state vector x(t) is confined to the positive orthant when the initial state is

positive:

x(t0) ∈ Rn+ and u(t) ∈ U ⇒ x(t) ∈ Rn+ ∀t ≥ t0

Theorem 1. [146] A dynamic system ẋ = f(x, u) is a positive system if f(x, u) is a

differentiable function and if

x ∈ Rn+ and xi = 0 ⇒ ẋi ≥ 0∀i

Using equations (2.11), (2.4) and (2.5), and taking into account the earlier mentioned

assumptions, we can easily verify that Theorem 1 is satisfied. Therefore, x(t) ∈ R6
+.

After the positiveness of the state vector has been checked, we deal now with the bound-

edness of each state variable.

2.5.2 Boundedness of variable x1

From equations (2.11), we have

ẋ1 = −k1µ1(x1)x2 + u1S1in − uoutx1
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Being given k1µ1(x1)x2 ≥ 0, we get

ẋ1 ≤ u1S1in − uoutx1 (2.16)

Let us add u2S1in ≥ 0 to right hand side of the inequality, we obtain

ẋ1 + uoutx1 ≤ uoutS1in (2.17)

Multiplying both sides of the inequality by e
∫ t
0 uout(τ) dτ :

ẋ1e
∫ t
0 uout(τ) dτ + x1uoute

∫ t
0 uout(τ) dτ ≤ S1inuoute

∫ t
0 uout(τ) dτ (2.18)

Based on the undertaken assumptions, we can also write

ẋ1e
∫ t
0 uout(τ) dτ + x1uoute

∫ t
0 uout(τ) dτ ≤ S1inuoute

∫ t
0 uout(τ) dτ (2.19)

Now, we integrate the inequality from 0 to t:

∫ t

0

(
ẋ1(tt)e

∫ tt
0 uout(τ) dτ + x1(tt)uout(tt)e

∫ tt
0 uout(τ) dτ

)
dtt

≤ S1in

∫ t

0

(
uout(tt)e

∫ tt
0 uout(τ) dτ

)
dtt (2.20)

we directly obtain

x1(t)e
∫ t
0 uout(τ) dτ − x1(0) ≤ S1in[e

∫ t
0 uout(τ) dτ − 1] (2.21)

Multiplying both sides by e−
∫ t
0 uout(τ) dτ :

x1(t) ≤ x1(0)e−
∫ t
0 uout(τ) dτ + S1in[1− e−

∫ t
0 uout(τ) dτ ] (2.22)

We can also write

x1(t) ≤ (x1(0)− S1in)e−
∫ t
0 uout(τ) dτ + S1in

Hence two cases are possible, if uout(τ) = 0:

x1(t) ≤ x1(0) (2.23)
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otherwise 0 ≤ e−
∫ t
0 uout(τ) dτ < 1 and thus

x1(t) ≤ S1in (2.24)

because x1(0) − S1in ≤ 0 from assumption A3. Since x1(0) ≤ S1in we retain equation

(2.24) as the upper bound of x1(t).

2.5.3 Boundedness of variable x2

First of all, let us define

ξ1 = x1 + k1x2 (2.25)

whose dynamic is given by

ξ̇1 = u1S1in − uoutx1 − αk1uoutx2 (2.26)

We know that 0 < α ≤ 1 and S1in ≤ S1in, thus

ξ̇1 ≤ u1S1in − αuoutx1 − αk1uoutx2 (2.27)

ξ̇1 ≤ u1S1in − αuoutξ1

Adding u2S1in ≥ 0 to right hand side of the equality, we obtain

ξ̇1 ≤ αuout
(S1in

α
− ξ1

)

ξ̇1 + αuoutξ1 ≤ αuout
(S1in

α

)
(2.28)

Multiplying both sides of the inequality by e
∫ t
0 αuout(τ) dτ and then integrating them from

0 to t (as previously done for the state x1), we obtain

ξ1(t)e
∫ t
0 αuout(τ) dτ − ξ1(0) ≤ S1in

α
[e

∫ t
0 αuout(τ) dτ − 1] (2.29)
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Multiplying both sides by e−
∫ t
0 αuout(τ) dτ :

ξ1(t) ≤
(
ξ1(0)− S1in

α

)
e−

∫ t
0 αuout(τ) dτ +

S1in

α
(2.30)

Since 0 ≤ e−
∫ t
0 αuout(τ) dτ ≤ 1, we have

ξ1(t) ≤ max
(
ξ1(0),

S1in

α

)
(2.31)

Now, replacing ξ1 by its equation (2.25), we get

x1(t) + k1x2(t) ≤ max
(
x1(0) + k1x2(0),

S1in

α

)
(2.32)

Since x1(t) ≥ 0 and x1(0) ≤ S1in it follows that

x2(t) ≤ max
(S1in

k1
+ x2(0),

S1in

αk1

)
(2.33)

2.5.4 Boundedness of variable x3

We define a variable ξ2 by the following equation

ξ2 = x3 − k2x2 (2.34)

whose dynamic is given by

ξ̇2 = −k3µ2(x3)x4 + u1(S2in + S2ad)− uoutx3 + αk2uoutx2 (2.35)

Being given k3µ2(x3)x4 ≥ 0 and 0 ≤ α ≤ 1, and (S2in + S2ad) ≤ (S2in + S2ad), we can

write

ξ̇2 ≤ u1(S2in + S2ad)− αuoutx3 + αk2uoutx2 (2.36)

Adding u2(S2in + S2ad) ≥ 0 to the right hand side, we obtain

ξ̇2 ≤ αuout
(S2in + S2ad

α
− ξ2

)
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ξ̇2 + αuoutξ2 ≤ αuout
(S2in + S2ad

α

)
(2.37)

Following the same procedure as before (for the previous states), we can easily find

ξ2(t) ≤ max
(
ξ2(0),

S2in + S2ad

α

)
(2.38)

Now, we replace ξ2 by its equation (2.34), we obtain

x3(t) ≤ max
(
x3(0)− k2x2(0),

S2in + S2ad

α

)
+ k2x2(t) (2.39)

Using equation (2.33), it holds that

x3(t) ≤ max
(
x3(0)− k2x2(0),

S2in + S2ad

α

)
+ max

(k2S1in

k1
+ k2x2(0),

k2S1in

αk1

)
(2.40)

2.5.5 Boundedness of variable x4

Let us define the variable ξ3:

ξ3 = k3x4 + x3 − k2x2 (2.41)

its dynamic is given by

ξ̇3 = −k3αuoutx4 + u1(S2in + S2ad)− uoutx3 + k2αuoutx2 (2.42)

Adding u2(S2in+S2ad) ≥ 0 to the right hand side and being given 0 ≤ α ≤ 1, we obtain

ξ̇3 ≤ αuout
(S2in + S2ad

α
− ξ3

)

ξ̇3 + αuoutξ3 ≤ αuout
(S2in + S2ad

α

)
(2.43)

As before, following the same procedure we obtain

ξ3(t) ≤ max
(
ξ3(0),

S2in + S2ad

α

)
(2.44)
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Replacing ξ3 by its equation (2.41):

k3x4(t) + x3(t)− k2x2(t) ≤ max
(
k3x4(0) + x3(0)− k2x2(0),

S2in + S2ad

α

)
(2.45)

since x3(t) ≥ 0, we have

x4(t) ≤ max
(
x4(0) +

x3(0)− k2x2(0)

k3
,
S2in + S2ad

αk3

)
+
k2

k3
x2(t) (2.46)

Using equation (2.33), the following holds

x4(t) ≤ max
(
x4(0) +

x3(0)− k2x2(0)

k3
,
S2in + S2ad

αk3

)
+ max

(k2S1in

k1k3
+
k2

k3
x2(0),

k2S1in

αk1k3

)
(2.47)

2.5.6 Boundedness of variable x5

Let us define the variable ξ4:

ξ4 = x5 − k5x4 − k4x2 (2.48)

which has the following dynamic

ξ̇4 = u1Cin − uoutx5 − qc(x) + k5αuoutx4 + k4αuoutx2 (2.49)

Adding u2Cin ≥ 0 to the right hand side, we obtain

ξ̇4 ≤ uoutCin − uoutx5 − qc(x) + k5αuoutx4 + k4αuoutx2 (2.50)

Being given qc(x) ≥ 0 and 0 ≤ α ≤ 1:

ξ̇4 ≤ αuout
(Cin
α
− ξ4

)

ξ̇4 + αuoutξ4 ≤ αuout
(Cin
α

)
(2.51)
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and thus,

ξ4(t) ≤ max
(
ξ4(0),

Cin
α

)
(2.52)

Using equations (2.33), (2.47) and (2.48), we obtain

x5(t) ≤ max
(
x5(0)− k5x4(0)− k4x2(0),

Cin
α

)
+ max

(
k5x4(0) +

k5(x3(0)− k2x2(0))

k3
,
k5(S2in + S2ad)

αk3

)
+ max

(k5k2S1in

k1k3
+
k2k5

k3
x2(0),

k2k5S1in

αk1k3

)
+ max

(k4S1in

k1
+ k4x2(0),

k4S1in

αk1

)
(2.53)

2.5.7 Boundedness of variable x6

We have

ẋ6 = u1Zin + u2Zad − uoutx6

Let us add u2Zin + u1Zad ≥ 0 to the right hand side, we get

ẋ6 ≤ uout(Zin + Zad − x6)

ẋ6 + uoutx6 ≤ uout(Zin + Zad) (2.54)

and thus,

x6(t) ≤ max
(
x6(0), Zin + Zad

)
(2.55)

Remark 2. For more clarity in writing regarding each of the equations (2.33, 2.38, 2.40,

2.44, 2.47, 2.52, 2.53) and (2.55), one can simply sum up the bounds of the function

max, as for example instead of equation (2.55), one can obtain

x6(t) ≤ x6(0) + Zin + Zad (2.56)
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however, the bounds on each state variable will be larger than what could be found using

the proper given equations.

2.6 Simulation Results

Having described and analysed the model in the previous sections, we now proceed to

evaluate, by numerical simulation, the effect of the added control inputs on the biogas

production. In this section, our intention is not to control the system but to demonstrate

what is achievable when stimulating substrates are added to the digester. Therefore,

we will compare two case of studies. Firstly, we only increase the acids concentration

of the fed waste. Then, we add the alkalinity to the digester as depicted in Figure 2.1.

We point out that to run the numerical simulation, we will use the same values of the

model parameter as given in [4], reported in Table 2.2.

Table 2.2: Model Parameters [4].

Acronyms Definition Units Value
k1 Yield for substrate (x1) degradation g/(g of x2) 42.1
k2 Yield for VFA (x3) production mmol/(g of x2) 116.5
k3 Yield for VFA consumption mmol/(g of x4) 268
k4 Yield for co2 production mmol/g 50.6
k5 Yield for co2 production mmol/g 343.6
k6 Yield for ch4 production mmol/g 453
µ1 Maximum acidogenic bacteria (x2) growth rate 1/day 1.25
µ2 Maximum methanogenic bacteria (x4) growth rate 1/day 0.74
ks1 Half saturation constant associated with x1 g/l 7.1
ks2 Half saturation constant associated with x3 mmol/l 9.28
ki2 Inhibition constant associated with x3 mmol/l 256
kb Acidity constant of bicarbonate mol/l 6.5 10−7

KH Henry’s constant mmol/(l.atm) 27
PT Total preasure atm 1.013
kLa Liquid/gas transfer constant 1/day 19.8

We run the simulation over a range of operating conditions as depicted in Figures 2.2-2.6

and x(0) = [1.3, 0.5, 6, 0.7, 60.95, 55]T . After a period of time (after 32 days), we increase

the concentration of the fed waste acids by adding S2ad to S2in as shown in Figure 2.7.

We compare, in Figures 2.9-2.18, the response of the system (red dotted line) with the

response of the AM2 model (blue dashed line) to the same operating conditions (u1,

S1in, S2in, Cin and Zin). As expected the addition of S2ad to the system has no effect on
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the states x1 and x2 (Figures 2.9-2.10) because the system has a cascade structure and

S2ad has no effect on the dynamics of the first two states. However, the effect of S2ad on

the states x3 and x4 is very clear in Figures 2.11-2.12. Indeed, a proper increase of the

input acids concentration leads to an increase of the acids concentration in the digester

and consequently growth of the methanogenic bacteria which is responsible to convert

the acids into methane and co2. This bacteria growth (increase of the concentration x4)

is naturally followed by an increase of the methane gas flow rate (see Figure 2.15) and

consequently increase of the biogas flow rate (see Figure 2.17). Nevertheless, the increase

of biogas production depicted in Figure 2.17 is not due to only the increase of methane

gas flow rate but also due the increase of co2 gas flow rate as depicted in Figure 2.16.

This is actually due to the pH decrease in the digester which affects the equilibrium

between the dissolved and the gaseous co2 and consequently affects the biogas quality

which has been marginally deteriorated as depicted in Figure 2.18. For this simulation,

we notice only a slight affect on x5 and no affect on x6 as plotted in Figures 2.13 and

2.14. However, the effect could be more visible if the digester pH was more affected.

In the second case of study, we couple the previous study with the addition of alkalinity

to the digester. Thus, for the same operating and initial conditions of the previous

simulation, the increase of acids input concentration (Figure 2.7) is followed by addition

of a stimulating alkalinity Zad = 500 (mmol/l) with dilution rate u2 depicted in Figure

2.8. In order to better visualise the effect of alkalinity addition along with acids increase

on the biogas quantity and quality, we plot the results (green dash dotted line) in Figures

2.9-2.18, where the results of the previous study have been reported. As it can be seen

from the first six former figures, all the model state variables have been affected which

is normal and expected since the modelling is a mass balance model and the dilution

rate u2 affects all the model dynamics. From the same figures, it can be noticed as well

that the substrates concentrations are more than those of the previous simulation and

the bacteria species concentrations are less, which is explained by the decreased time

of degradation (uout = u1 + u2) and the increased input concentrations (S2ad and Zad).

Moreover, increase of the alkalinity concentration x6 is followed by an increase of the

digester pH which promotes the dissolution of the gaseous co2 and therefore increase of

the inorganic carbon concentration (see Figures 2.13). Regarding the biogas production,

it is increased compared to the AM2 model (blue dashed line) and decreased compared to

the previous case of study (see in Figure 2.13). However, we do not consider this decrease
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in the biogas quantity as a loss in our application. Because, this is a consequence of a

just slight decrease in the methane gas (burnable gas) production and a more important

decrease in the co2 gas (non-burnable gas) production as shown in Figures 2.15 and 2.16.

For example, in Figure 2.15, when we compare the two case of studies (red dotted line

and green dash dotted line) between 32 and 40 days, we see that the biogas production

is decreased about 10.6 mmol/l per day which results from a decrease of about only 0.8

mmol/l per day of methane gas production and about 9.8 mmol/l per day of co2 gas

production as depicted in Figures 2.15 and 2.16, respectively. Consequently, the biogas

quality is enhanced as it can be seen in Figure 2.18 and thus it is more energetic. Indeed,

we can see clearly from the former figure, between 32 and 40 days that the biogas quality

passes from 34% to 30% countenance of co2, which is a considerable enhancement of the

biogas quality.

The difference between the two case of studies may seem sometimes slight, yet it has

essential consequences for the control of biogas quantity and quality and thus the intro-

duction of biogas plants in the virtual power plant.

2.7 Conclusion

In this chapter, we have presented the reference model for the reduced AD modelling,

the AM2 model. Then, we have performed a slight modification to the AM2 model by

adding new control inputs. These added control inputs reflect the addition of stimulating

substrates, acids and alkalinity. This was motivated by the aim to promote integration

of biogas plants in the power grid. Or in other words, to add more degrees of freedom in

the control of biogas production. We have also explained, in this chapter, how to identify

the model parameters. Finally, we have proved the positiveness and boundedness of the

model state variables which will play a crucial role in the observer design and control

synthesis, as it will be seen further in the manuscript.
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Figure 2.13: Inorganic carbon concentration (mmol/l).
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Chapter 3

State Estimation

3.1 Introduction

Observer is a an auxiliary system (O) that its input is the input and output signals of a

system (S) and its output is the state estimate of the system (S) as depicted in Figure

3.1.

System (S)
Internal state 𝑥

Observer (O)

Input (𝑢) Output (𝑦)

Estimated state
(  𝑥)

Figure 3.1: State observer principle.

In the last decades, observer design for the AD process has been the object of growing

interest. Among many others, we may mention the asymptotic observer [32] which relies

on a systematic linear change of variable (for a certain class of systems) that allows

estimation of the state variables without requiring knowledge of the kinetic functions

which are usually complex and uncertain. However, its convergence depends on the

control input and it is sensitive to model uncertainties [23]. Therefore, it has been

51
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extended to the interval observer [62], [63] which is more appropriate when the time-

varying bounds enclosing the uncertainties are known. Often, the interval observer is

composed of two asymptotic observers, one to estimate the state upper bound x+(t)

and a second one to estimate the lower bound x−(t). Then the system state will be

enclosed in the envelope drown by x−(t) and x+(t) provided that at the initial time

x−(t0) ≤ x(t0) ≤ x+(t0). Unfortunately, sometimes the obtained envelope is large.

Therefore, it has been proposed in [64] proposed to launch a bundle of interval observers

with different initial conditions and then select the smallest envelope where the actual

state should be. The interval observers designed [64] have a partially tunable rate of

convergence due to the use of some system outputs that are nonlinear functions of the

state variables. However, the interval observers can be applied only to cooperative

systems.

The extended Kalman filter, has been applied to the AD applications repeatedly, [73],

[67], [32], [68], [69], [70], [71] and the references in [72], with success. However, it does

not, always, possess a globall asymptotically stable error dynamics [74], and even if it

does than it is difficult to prove the global convergence analytically [75]. Besides, it

has been prooved in [59] that due to the nonlinear structure of the AD model and the

number of input variables, it becomes impossible to apply the extended Kalman filter

when one wants to estimate the biomass concentration (the system is not uniformly

observable for any input), which is a key state variable to estimate, since it reflects the

system health and stability [50].

We may also mention the high gain observer which has been applied successfully to a

second order AD model [76], then enhanced in [59] and extended to forth order Ad model

in [44]. For the same class of systems considered in [76], other nonlinear observers have

been designed in [77], [78]. To design these observers and the high gain observer, the

transformed canonical form is required and this is not always possible to perform [56].

Consequently, we will propose in the current chapter to design simple nonlinear observers

that do not require the transformation of the model, and rely only on the nature of the

involved nonlinearities in it (Lipschitz property of the nonlinear functions included in

the model). Moreover, the design methodology is not restricted to a predefined order

of the model, on contrary it is general and can be applied to a wide class of systems.

Indeed, the design methodology will be based on the use of the DMVT which allows
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the transformation of the nonlinear dynamics of the estimation error to an LPV system.

Then, by using the LPV techniques, we will synthesize the stability conditions in the

form of LMIs. In addition to that, we will enhance the feasibility of the obtained LMIs

by using a judicious reformulation of the Young’s inequality.

Moreover, due to the exposition of AD processes, at real plants, to measurement and

dynamic disturbances [45], we will extend the methodology to overcome the dynamics

and measurement disturbances. This will be realized by the design of H∞ nonlinear

observers.

Furthermore, we will provide the discrete form of the nonlinear observers because in

real plants the observers are, usually, driven by sampled data [147]. Last but not least,

since we target to facilitate the introduction of biogas plants in VPPs, and the fact that

at industry scale the most performed measurement are nonlinear functions of the state

variables, then we will expand the deign methodology to the case of nonlinear outputs.

We want to say as well, that although the Kalman filtrating [59], all the nonlinear

observers that we will design allow the estimation of the key process variables, bacteria

concentrations, which reflect the health of the AD reactor [50].

The rest of the chapter is organized as the following. First, we will remember some

notions related to the observability of nonlinear systems. Then, we will recall some def-

initions, theorems and notations that are required for understanding the methodology

and allowing the extension of the results to a general class of systems. In order to not

overload the chapter, we will review some elementary mathematical complement and no-

tions related to the stability of the continuous and discrete dynamical systems (Lyapunov

Stability) in Appendices C and D, respectively. After setting the required preliminaries

and notation, we will present a general class of systems to which the considered AD

model (2.11) belongs. Indeed, this step allows us to render the design methodology

general and usable for other applications belonging to the same class of systems that we

will present. Further, we will design an LMI-based invariant like observer and the apply

it to the studied AD model. Later, to obtain an observer more global than the invariant

like observer, we will design an LMI-based nonlinear observer of the same form as the

generalized Arcak’s observer [148]. Then, with the aim to render the obtained observer

robust to disturbances affecting the model dynamics and measurements, we will enhance

the synthesis by including the H∞ criterion in observer design. Later, we will discretize
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both of the LMI-based nonlinear observer and the LMI-based H∞ nonlinear observer.

Obviously, we will perform numerical simulations, where we apply and compare the re-

sulted nonlinear observers. Before concluding the chapter, we will devote a section to

some discussions and an eventual extension of the design methodology to the case of

nonlinear systems nonlinear outputs. This case being promising, it will definitely applied

to the studied AD model. Finally, we will conclude the chapter with some remarks.

3.2 Observability of a dynamical system

Before designing an observer for a dynamical system, it has to be checked if the later

is observable or not. In other words, if it is possible to reconstruct the state variables

from the available input and output signals of the system or not.

A continuous time-invariant linear state-space model ẋ = Ax+Bu

y = Cx+Du
(3.1)

where x ∈ X ⊂ Rn is the state vector, u ∈ U ⊂ Rm the input and y ∈ Y ⊂ Rp is the

measured output, A the state matrix, B the input matrix, C the output matrix, and D

the feed-forward matrix, all of appropriate dimensions, is observable if and only if the

observability Kalman Criterium is satisfied [149]

rank


C

CA

. .

CAn−1

 = n (3.2)

However, for the nonlinear systems (3.3)

 ẋ = f(x, u)

y = h(x, u)
(3.3)

where, f : Rn×Rm→ Rn and h : Rn×Rm → Rp, the observability depends on the input

signal and the initial conditions too.
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Definition 2. Indistinguishability [150], [56]

A paire (x0, x
′
0) ∈ Rn × Rn is indistinguishable for a system (3.3) if

∀u ∈ U, ∀t ≥ 0, h(χu(t, x0)) = h(χu(t, x′0)).

where, χu(t, xt0) denotes the solution of the state equation (3.3) under the application of

input u on [t0, t] and satisfying χu(t0, xt0) = xt0, while u will be omitted for uncontrolled

cases [56].

A state x is indistinguishable from x0 if the pair (x, x0) is indistinguishable. From this,

observability can be defined.

Definition 3. Observability [150], [56], [151]

The system (3.3) is observable at x0 if x0 is distinguishable from all x ∈ Rn. Moreover,

the system (3.3) is observable if ∀x0 ∈ Rn, the system (3.3) is observable at x0.

In practice, these concepts are relatively difficult to verify and often the following criteria

is used for the local observabilty.

Criterion 1. Rank Criterion

The nonlinear system (3.3) is observable if

rank
(
dh, dLfh, . . . , dL

n−1
f h

)T
= n

where Lfh is the Lie derivative of h along f :

Lfh =
n∑
i=1

fi(x)
∂h

∂xi

and the expression dLkfh given by

dLkfh =

[
∂Lkfh

∂x1

∂Lkfh

∂x2
. . .

∂Lkfh

∂xn

]
.

3.3 Notations and Preliminaries

In this section, we introduce some notations and preliminaries that will be useful to

guarantee the asymptotic convergence of the estimation error to zero. Moreover, we will
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adopt a general notation in order to extend the observers, that will be presented in the

subsequent sections, to a general class of systems

• the set Co(x, y) = {λx+ (1− λ)y, 0 ≤ λ ≤ 1} is the convex hull of {x, y},

• es(i) =
(

0, ..., 0,

i th︷︸︸︷
1 , 0, ..., 0︸ ︷︷ ︸

s components

)T ∈ Rs, s ≥ 1 is a vector of the canonical basis of Rs.

Definition 4 (Lipschitz condition). Let f(t, x) be piecewise continuous in t and satisfy

the Lipschitz condition

‖f(t, x)− f(t, x̂)‖ ≤ γf‖x− x̂‖, ∀ x, x̂ ∈ Rn et ∀ u ∈ Rm (3.4)

then, the function f(t, x) is said to be Lipschitz in x, and the positive constant γf is

called a Lipschitz constant.The words locally Lipschitz and globally Lipschitz are used

to indicate the domain over which the Lipschitz condition holds [152].

Theorem 2 (Mean value theorem [153]). Let ϕ : Rn → Rq. Let x, y ∈ Rn. We

assume that ϕ is differentiable on Co(x, y). Then, there are constant vectors z1, ..., zq ∈

Co(x, y), zi 6= x, zi 6= y for i = 1, ..., q such that :

ϕ(x)− ϕ(y) =

 q,n∑
i,j=1

eq(i)e
T
n (j)

∂ϕi
∂xj

(zi)

 (x− y). (3.5)

Lemma 1 (a variant of Lipschitz reformulation). Let ϕ : Rn → Rq a differentiable

function on Rn. Then, the following items are equivalent:

• ϕ is a globally γϕ-Lipschitz function,

• there exist finite and positive scalar constants aij , bij so that for all x, y ∈ Rn

there exist zi ∈ Co(x, y), zi 6= x, zi 6= y and functions ψij: Rn → R satisfying the

following:

ϕ(x)− ϕ(y) =

q,n∑
i,j=1

ψij(zi)Hij
(
x− y

)
(3.6)

aij ≤ ψij
(
zi

)
≤ bij , (3.7)

where

ψij(zi) =
∂ϕi
∂xj

(zi), Hij = eq(i)e
T
n (j).
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Notice that this lemma is obvious from the mean value theorem, but it is important to

introduce it at this stage, under this formulation, in the aim to simplify the presentation

of the proposed observers design method. Indeed, for our technique, we will exploit (3.6)-

(3.7) instead of a direct use of Lipschitz property.

Lemma 2 ([154]). Let X and Y be two given matrices of appropriate dimensions. Then,

for any symmetric positive definite matrix S of appropriate dimension, the following

inequality holds:

XTY + Y TX ≤ 1

2

[
X + SY

]T
S−1

[
X + SY

]
. (3.8)

This lemma will be very useful for the main contributions of our work. It allows pro-

viding less restrictive LMI conditions compared to the classical LMI techniques for the

considered class of systems.

3.4 Observer Design

In this part a couple of observers will be designed for continuous and discrete time,

disturbed and undisturbed systems. Hence, to not overload the manuscript we will give

the results in a general way. This means that we rewrite the studied AD model (2.11)

in the following general form

{
ẋ = A(ρ)x+Bγ(x) + g(u, t)

y = Cx

(3.9a)

(3.9b)

where x ∈ Rn is the state vector, y ∈ Rp is the output measurement, u ∈ Rq is an input

vector and ρ ∈ Rs is an L∞ bounded and known parameter. The affine matrix A(ρ) is

expressed under the form

A(ρ) = A0 +
s∑
j=1

ρjAj (3.10)

with ρj,min ≤ ρj ≤ ρj,max, which means that the parameter ρ belongs to a bounded

convex set for which the set of 2s vertices can be defined by

Vρ =
{
% ∈ Rs : %j ∈ {ρj,min, ρj,max}

}
. (3.11)
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The matrices Ai ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n are constant. The nonlinear function

γ : Rn −→ Rm is assumed to be globally Lipschitz, and it is obvious that Bγ(.) can

always be written under the detailed form

Bγ(x) =
m∑
i=1

Biγi(

ϑi︷︸︸︷
Hix) (3.12)

where Hi ∈ Rni×n and Bi is the ith column of the matrix B.

Remark 3. We can show that the assumptions on the global Lipschitz property of γi(.)

when applied to the considred AD model (2.11) are preserved. Indeed, due to the

boundedness of the state variables of the model, as shown in Section 2.5, the state is

confined in a compact set C, where we can construct a saturated version of each γi(.),

which is globally Lipschitz on C. For more details on this issue, we refer the reader

to [155], [156] to see how we construct saturated versions of γ(.).

3.4.1 LMI-Based Invariant Like State Observer

As already mentioned, the structure of the nonlinear invariant like observer that we will

design is inspired from the invariant observer proposed in [82] and [83] for a chemostat

model, where the invariance refers to the invariance under a group action. In the fol-

lowing, we will summarize some notions about this concept but for more comprehension

the reader is referred to [84], [82] and for more details to [80].

Let consider the system (3.3) and let G be a Lie group of transformations which acts

on X by ϕg: X → X ∀g ∈ G, ϕg is a diffeomorphism (at least of class C1) on X with

(ϕg)
−1 = ϕg−1 and ϕg1 ◦ ϕg2 = ϕg1.g2 . Moreover, let us denote the action of the group

G on U by (ψg)g∈G and on Y by (ρg)g∈G.

Definition 3.1. G is a symmetry group of (3.3) if for every solution (x(t), u(t)) of (3.3)

and ∀g ∈ G, (ϕg(x(t)), ψg(u(t))) is also a solution.

Therefore, the system (3.3) is said to be invariant under G if and only if ∀g, x and u:

f(ϕg(x), ψg(u) = Dϕg(x)f(x, u)

where Dϕg is the Jacobian matrix of ϕg(x).

After finding the group of transformation, one can write the following pre-observer for
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the system (3.3):

˙̂x = F (x̂, u, ŷ) (3.13)

if and only if ∀x and u:

F (x, u, h(x, u)) = f(x, u) (3.14)

Moreover, the pre-observer (3.13) is said to be invariant if and only if ∀g, x̂ and ŷ:

F (ϕg(x̂), ψg(u), ρg(ŷ)) = Dϕg(x̂(t)F (x̂, u, ŷ) (3.15)

To design an invariant observer, we need invariant functions and invariant vector fields:

• A function defined on X ⊂ Rn is invariant if and only if:

J(ϕg(x)) = J(x), ∀g and x.

• A vector field ω is invariant with respect to the action of ϕg on X if and only if:

ω(ϕg(x)) = Dϕg(x)ω(x), ∀g and x.

Finally, it has been proven in [82] that the general form of an invariant pre-observer for

the system (3.3) is given by

˙̂x = f(x̂) + σiJi(x̂, y)ωi(x̂) (3.16)

with Ji being an invariant function satisfying Ji(x̂, h(x̂, u)) = 0 and ωi an invariant

vector field. Moreover if (3.16) converges to (3.3) then it is called invariant observer.

It has been found in [83] and [84] that for a fourth order AD model (composed of the

first fourth equations of the model (2.11)), the invariant functions are the logarithm

functions and the vector fields for each of the differential equation ˙̂xi is the state xi for

i = 1 . . . 4. Thus, using the same invariant logarithm functions, we will design in our

turn an invariant like nonlinear observer. It will be composed of a copy of the system

and a logarithmic correction term as the following

˙̂x = A(ρ)x̂+
m∑
i=1

Biγi(ϑ̂i) + g(u, t) + L(ρ)
[
ln
( y1

eTp (1)Cx̂

)
, . . . , ln

( yp
eTp (p)Cx̂

)]T
(3.17)

with

ϑ̂i = Hix̂, and, L(ρ) = L0 +

s∑
j=1

ρjLj. (3.18)
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where x̂ is the estimate of x, and the matrices Li ∈ Rn×p are the observer gains. They

will be determined so that the estimation error e = x − x̂ decreases asymptotically

towards zero. Its dynamic is obtained by using equations (3.9a), (3.12) and (3.17)

ė = A(ρ)e+
m∑
i=1

Bi(γi(ϑi)− γi(ϑ̂i))− L(ρ)
[
ln
( y1

eTp (1)Cx̂

)
, . . . , ln

( yp
eTp (p)Cx̂

)]T
(3.19)

For a clearer presentation and in order to refine the synthesized conditions under which

the estimation error (3.19) converges asymptotically to zero, we will proceed step by

step at this stage.

First, since γ(.) is assumed to be globally Lipschitz, then from Lemma 1 there exist

ri ∈ Co(ϑi, ϑ̂i), functions φij : Rni −→ R and constants aij , bij , such that

B(γ(x)− γ(x̂)) =

m,ni∑
i,j=1

φij(ri)Hij
(
ϑi − ϑ̂i

)
(3.20)

and

aij ≤ φij(ri) ≤ bij , (3.21)

where

φij(ri) =
∂γi

∂ϑji
(ri), Hij = Bie

T
ni

(j). (3.22)

For shortness, we set φij , φij(ri). Without loss of generality, we assume that aij = 0

for all i = 1, . . . ,m and j = 1, . . . , ni, and moreover, since ϑi − ϑ̂i = Hie, then we have

B(γ(x)− γ(x̂)) =

m,ni∑
i,j=1

φijHijHie (3.23)

Second, we can always write

ln
( yi
eTp (i)Cx̂

)
= ln(eTp (i)Cx)− ln(eTp (i)Cx̂)︸ ︷︷ ︸

Υi(x)−Υi(x̂)

(3.24)

thus, from Lemma 1 and in some specific invariant space (where the functions Υi(x) are

defined), there exist zi ∈ Co(min(xi, x̂i),max(xi, x̂i)), functions ψij : Rn −→ R and
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constants min(ψij),max(ψij), such that

Υ(x)−Υ(x̂) =

p,n∑
i,j=1

ψij(zi)Mije (3.25)

with Υ(x) = [Υi(x), . . . ,Υp(x)]T and

min(ψij) ≤ ψij(zi) ≤ max(ψij), (3.26)

where

ψij(zi) =
∂Υi

∂xj
(zi), Mij = ep(i)e

T
n (j). (3.27)

For shortness, we set ψij , ψij(zi).

Now, using equations (3.19), (3.23) and (3.25), we obtain

ė =

A(ρ) +

m,ni∑
i,j=1

φijHijHi − L(ρ)

p,n∑
i,j=1

ψijMij

 e (3.28)

Since we know a priori that min(ψij) 6= 0 in equation (3.26), we propose to write

0 ≤ ψij −min(ψij) ≤ max(ψij)−min(ψij)︸ ︷︷ ︸
bij

(3.29)

and then, add and subtract min(ψij) from the term ψij in equation (3.28) as the following

ė =

A(ρ) +

m,ni∑
i,j=1

φijHijHi − L(ρ)

p,n∑
i,j=1

(ψij + min(ψij)−min(ψij))Mij

 e (3.30)

hence, we obtain

ė =

A(ρ)− L(ρ)

p,n∑
i,j=1

min(ψij)Mij︸ ︷︷ ︸
C

+ (3.31)

m,ni∑
i,j=1

φijHijHi − L(ρ)

p,n∑
i,j=1

(ψij −min(ψij))︸ ︷︷ ︸
ϕij

Mij

 e
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where

0 ≤ ϕij ≤ bij (3.32)

The objective, now, consists in finding the observer parameters so that the estimation

error dynamics (3.31) be asymptotically stable. Hence, as usual for this class of systems

concerned by the LMI techniques, we use a quadratic Lyapunov function to analyse the

stability. That is, we use

V = eTPe, P = P T > 0 (3.33)

whose derivative V̇ (e) along the trajectories (3.31) is given by

V̇ = eT


A(ρ)− L(ρ)C +

m,ni∑
i,j=1

φijHijHi − L(ρ)

p,n∑
i,j=1

ϕijMij

T

P

+P

A(ρ)− L(ρ)C +

m,ni∑
i,j=1

φijHijHi − L(ρ)

p,n∑
i,j=1

ϕijMij

 e (3.34)

that we rewrite as the following

V̇ = eT

AT (ρ)P− CT
LT (ρ)P + PA(ρ)− PL(ρ)C︸ ︷︷ ︸

Ψ

 e+ eT
m,ni∑
i,j=1

φij

PHij︸ ︷︷ ︸
XT

ij

Hi︸︷︷︸
Yi

+HT
i HT

ijP

 e

+eT
p,n∑

i,j=1

ϕij

PL(ρ)︸ ︷︷ ︸
XT

ij

(−Mij)︸ ︷︷ ︸
Yij

+(−Mij)
TLT (ρ)P

 e (3.35)

Now, by applying Lemma 2 we obtain

XTijYi + YTi Xij ≤
1

2

(
Xij + SijYi

)T
S−1
ij

Πij︷ ︸︸ ︷(
Xij + SijYi

)
(3.36)

and

XTijYij + YTijXij ≤
1

2

(
Xij + SijYij

)T
S−1
ij

Πij︷ ︸︸ ︷(
Xij + SijYij

)
(3.37)

for any symmetric positive definite matrices Sij and Sij . Moreover, from (3.21) and

(3.32) and the fact that aij = 0, inequality V̇ < 0 holds if

Ψ−
m,ni∑
i,j=1

(
ΠT
ij

(
− 2

bij
Sij
)−1

Πij

)
−

p,n∑
i,j=1

(
Π
T
ij

(
− 2

bij
Sij
)−1

Πij

)
< 0 (3.38)
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consequently, by Schur lemma, inequality (3.38) is equivalent to


Ψ

[
ΠT

1 . . . ΠT
m

] [
Π
T
1 . . . Π

T
p

]

(?) −ΛS 0

(?) (?) − Λ S

 < 0 (3.39)

where

Πi =
[
ΠT
i1 . . .Π

T
ini

]T
, Πij = HTijP + SijHi (3.40)

Πi =
[
Π
T
i1 . . .Π

T
in

]T
, Πij = LT (ρ)P + Sij(−Mij) (3.41)

and

S = block-diag(S1, . . . ,Sm), Si = block-diag(Si1, . . . ,Sini) (3.42)

Λ = block-diag(Λ1, ...,Λm), Λi = block-diag (Λi1, . . . ,Λini) (3.43)

with

Λij =
2

bij
Ini , (3.44)

and

S = block-diag(S1, . . . ,Sp), Si = block-diag(Si1, . . . ,Sin) (3.45)

Λ = block-diag(Λ1, ...,Λp), Λi = block-diag
(
Λi1, . . . ,Λin

)
(3.46)

with

Λij =
2

bij
Ip (3.47)

Finally, we use the change of variables Ri = LTi P to solve the LMI (3.39).

3.4.1.1 Application and Simulation Results

In order to apply the nonlinear invariant like observer (3.17) to the AD model (2.10) for

estimating its key state variables (bacteria concentrations [50]) and inorganic carbon,

we first write the model in the form (3.9a), (3.9b). This can be easily done by using the
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following parameters

ρ = uout, A0 = 0, A1 = −block-diag(1, α, 1, α, 1, 1) (3.48)

B =

 −k1 1 k2 0 k4 0

0 0 −k3 1 k5 0

T , γ(x) =

 µ1(x1)x2

µ2(x3)x4

 (3.49)

g(u, t) =
[
u1S1in 0 u1(S2in + S2ad) 0 u1Cin − qc u1Zin + u2Zad

]T
(3.50)

and for assuming available, on line, measurements of x1, x3 and x6, we take

C =


1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1

 (3.51)

Moreover, for the observer design we have

m = 2, s = 1, n1 = 2, γ1(x) = µ1(x1)x2, n2 = 2, γ2(x) = µ2(x3)x4 (3.52)

and

H1 =

 1 0 0 0 0 0

0 1 0 0 0 0

 , H2 =

 0 0 1 0 0 0

0 0 0 1 0 0



B1 =
[
−k1 1 k2 0 k4 0

]T
, B2 =

[
0 0 −k3 1 k5 0

]T
(3.53)

The matrices Mij ∈ Rp×n are with all elements null except the element Mij(i, j), for

example:

M23 =


0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

 (3.54)

The simulation has been run for ρmin = 0.1 day−1, ρmax = 0.9 day−1, S1in = 16 g/l,

S2in = 170 mmol/l, Cin = 76.15 mmol/l, Zin = 200 mmol/l, Zad = 700 mmol/l, S2ad = 0

mmol/l, and the parameter values given in Table 2.2. After solving the LMIs (3.39) by
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using LMI MATLAB Toolbox, the following observer gains have been obtained

L0 =



23.4241 −54.7172 0

−0.6227 1.4478 0

−55.5205 626.7350 0

−0.0335 −1.8752 0

−40.0327 −543.4513 0

0 0 0.0118


, L1 =



12.2058 6.0284 0

−0.3258 −0.1598 0

−29.0052 −13.8996 0

−0.0198 −0.0075 0

−21.3754 −10.9675 0

0 0 −0.0166


Moreover, the system and the observer were initialized by x(0) = [2, 0.5, 12, 0.7, 53.48, 55]T

and x̂(0) = [2, 1, 12, 0.4, 28.5, 55]T , respectively. The simulation results are depicted in

Figures 3.2-3.7. It is quite clear from the later figures that the estimated state variables

by the proposed nonlinear invariant like observer converge asymptotically to the sim-

ulated system states. Indeed, although the large initial estimation error, the designed

observer is showing satisfactory behaviour where the estimations error is decreasing

asymptotically to zero as presented in Figures 3.8-3.10. However, it has to be pointed

out that the observer is applicable only locally, where the functions Υi(.) in (3.24) are

well defined. In addition to that, if at the initial time the term eTp (i)Cx̂ approaches zero

then, unfortunately, the observer may diverge. This motivates the search for a more

globally applicable observer that will be designed in the next sections.
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Figure 3.2: Substrate concentration x1 and its estimate x̂1 (g/l).

3.4.2 Continuous Time LMI-Based Nonlinear State Observer

In order to design a global nonlinear state observer for the AD model (3.9a), (3.9b), we

design, in this section, a nonlinear state observer of the same form as the generalized



Chapter 3. State Estimation 66

time (days)
0 10 20 30 40 50 60 70 80 90 100

A
ci
d
og
en
ic

b
ac
te
ri
a
x
2
an

d
it
s
es
ti
m
at
e
x̂
2
(g
/l
)

0.4

0.5

0.6

0.7

0.8

0.9

1
x2

x̂2

Figure 3.3: Acidogenic bacteria x2 and its estimate x̂2 (g/l).
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Figure 3.4: Acetate concentration x3 and its estimate x̂3 (mmol/l).
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Figure 3.5: Mathenogenic bacteria x4 and its estimate x̂4 (g/l).
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Figure 3.6: Inorganic carbon x5 and its estimate x̂5 (mmol/l).
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Figure 3.7: Alkalinity concentration x6 and its estimate x̂6 (mmol/l).
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Figure 3.8: Estimation error e2 = x2 − x̂2.
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Figure 3.9: Estimation error e4 = x4 − x̂4.
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Arcak’s observer [148]. Its structure reads

˙̂x = A(ρ)x̂+
m∑
i=1

Biγi(ϑ̂i) + g(u, t) + L(ρ)(y − Cx̂) (3.55)

with

ϑ̂i = Hix̂+Ki(ρ)(y − Cx̂) (3.56)

where x̂ is the estimate of x, and

Ki(ρ) = K0
i +

s∑
j=1

ρjK
j
i , L(ρ) = L0 +

s∑
j=1

ρjLj (3.57)

The objective is to find the observer gains Li ∈ Rn×p and Kj
i ∈ Rni×p so that the

estimation error

e = x− x̂ (3.58)

converges asymptotically to zero.

Using Lemmea 1, equations (3.12) and (3.56), we can easily obtain

m∑
i=1

Bi(γi(ϑi)− γi(ϑ̂i)) =

m,ni∑
i,j=1

φij(ri)Hij (Hi −Ki(ρ)C) e (3.59)

and

aij ≤ φij(ri) ≤ bij , (3.60)

where

ϑi ≤ ri ≤ ϑ̂i, φij(ri) =
∂γi

∂ϑji
(ri), Hij = Bie

T
ni

(j). (3.61)

For shortness, we set φij , φij(ri). Without loss of generality, we assume that aij = 0

for all i = 1, . . . ,m and j = 1, . . . , ni. For more details about this, we refer the reader

to [157].

Using equations (3.9a), (3.9b), (3.55) and (3.59) we obtain the following dynamic equa-

tion of the estimation error (3.158)

ė =

A(ρ)− L(ρ)C +

m,ni∑
i,j=1

φijHij (Hi −Ki(ρ)C)

 e (3.62)
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Now, we summarize in Theorem 3 the LMI conditions under which the estimation error

(3.62) decreases asymptotically toward zero.

Theorem 3. If there exist symmetric positive definite matrices P ∈ Rn×n, Si ∈ Rni×ni

and matrices Rj ∈ Rp×n, Yji ∈ Rp×ni, i = 1, . . .m, j = 0, . . . s, of appropriate dimen-

sions so that the following LMI conditions are feasible


A
(
P,Rj , ρ

) [
ΣT

1 . . . ΣT
m

]

(?) −ΛS

 < 0, ∀ρ ∈ Vρ (3.63)

where

A
(
P,Rj , ρ

)
= AT

0 P + PA0 − CTR0 −RT
0 C +

s∑
j=1

ρj

(
AT

j P + PAj − CTRj −RT
j C
)

(3.64)

Σi =
[
ΣT
i1 . . .Σ

T
ini

]T
, ΣT

ij = PHij +HT
i Si − CT

(
Y0
i +

s∑
l=1

ρlY li

)
(3.65)

Λ = block-diag
(

Λ1, ...,Λm

)
, Λi = block-diag (Λi1, . . . ,Λini) , Λij =

2

bij
Ini (3.66)

S = block-diag
(
S1, . . . ,Sm

)
, Si = block-diag

(
Si, . . . ,Si︸ ︷︷ ︸
ni times

)
(3.67)

then, the estimation error converges asymptotically towards zero. Consequently, the

observer parameters Lj and Kj
i are to be computed as follows

Lj = P−1RTj , Kj
i = S−1

i (Yji )T , i = 1, . . .m, j = 0, . . . s. (3.68)

Proof. Usually, for this class of systems (3.62) concerned by LMI techniques, we use a

quadratic Lyapunov function to analyse their stability. That is, we use

V = eTPe, P = P T > 0 (3.69)

where its derivative V̇ (e) along the trajectories (3.62) is given by

V̇ (e) = eT


AL(ρ) +

m,ni∑
i,j=1

φijHijHKi

T

P + P

AL(ρ) +

m,ni∑
i,j=1

φijHijHKi


 e (3.70)
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with

AL = A(ρ)− L(ρ)C, HKi = Hi −Ki(ρ)C (3.71)

The derivative of Lyapunov function (3.70) is negative if

ATL(ρ)P + PAL(ρ) +

m,ni∑
i,j=1

φij

PHij︸ ︷︷ ︸
XT
ij

HKi︸︷︷︸
Yi

+YTi Xij

 < 0 (3.72)

From Lemma 2, we know that for all symmetric positive definite matrices Sij , we have

XT
ijYi + YT

i Xij ≤
1

2

[
Xij + SijYi

]T
S−1
ij

[
Xij + SijYi

]
︸ ︷︷ ︸

Σij

(3.73)

Since the matrix Yi does not depend on the index j and depends on the same Ki(ρk),

then to obtain an LMI, we need to put

Sij = Si, ∀(i, j) (3.74)

Consequently, from (3.60) and the fact that without loss of generality aij = 0, inequal-

ity (3.73) is satisfied if

ATL(ρ)P + PAL(ρ) +

m,ni∑
i,j=1

(
ΣT
ij

(
− 2

bij
Si
)−1

Σij

)
≤ 0. (3.75)

Therefore, from Schur lemma, inequality (3.75) is equivalent to


ATL(ρ)P + PAL(ρ)

[
ΣT

1 . . . ΣT
m

]

(?) −ΛS

 ≤ 0 (3.76)

Finally, with the change of variable Rj = LTj P and Yji = (Kj
i )
TSi, and since (3.76) is

affine in ρ, then the convexity principle [158] leads to (3.63). This ends the proof.
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3.4.3 Continuous Time LMI-Based H∞ Nonlinear State Observer

In this section, we extend the designed observer in Section 3.4.2 to account for distur-

bances affecting the system dynamics and measurements, as the following

 ẋ = A(ρ)x+Bγ(x) + g(u, t) + Ew

y = Cx+Dw
(3.77)

where the system parameters are as those defined for the system (3.9), and w ∈ Rz is the

disturbance L2 bounded vector. The matrices E ∈ Rn×z and D ∈ Rp×z are constant.

Remark 4. Notice that the fact we use the same disturbances vector w in the dynamics

and output measurements is not restrictive because the matrices E, D and the dimension

of w are arbitrary. Indeed, if we assume that in the dynamics we have E1w1, and in

the measurements equation, we have E2w2, then we can always write E = [E1 0],

D = [0 E2] and w =

w1

w2

, which lead to the form (3.77).

To estimate the unmeasurable sate variables of (3.77), we use the same observer scheme

(3.55). However, now, the objective is to find the observer gains Li ∈ Rn×p and Kj
i ∈

Rni×p so that the estimation error (3.158) turns to be H∞ asymptotically stable. This

means, to find the observer gains so that the following H∞ criterion [159] is satisfied

‖e‖L2 ≤
√
µ‖w‖2L2 + ν‖e0‖2 (3.78)

where
√
µ is the disturbance attenuation level and ν > 0 a parameter to be determined.

In other words,
√
µ is the disturbance gain from w to e.

Using Lemmea 1, equations (3.12), (3.56) and (3.77) we obtain

m∑
i=1

Bi(γi(ϑi)− γi(ϑ̂i)) =

m,ni∑
i,j=1

φij(ri)Hij [(Hi −Ki(ρ)C) e−Ki(ρ)Dw] (3.79)

with φij(ri) and ri as defined in (3.60) and (3.61), and for shortness, we set φij , φij(ri).

Now, using equation (3.55), (3.77) and (3.79), we obtain the following estimation error

dynamics
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ė =

AL(ρ) +

m,ni∑
i,j=1

φijHijHKi

 e+

EL(ρ) +

m,ni∑
i,j=1

φijHijDKi

w (3.80)

with

AL(ρ) = A(ρ)− L(ρ)C, EL(ρ) = E − L(ρ)D (3.81)

HKi = Hi −Ki(ρ)C, DKi = −Ki(ρ)D (3.82)

The H∞ criterion (3.78) is satisfied if the following holds [159]:

W , V̇ (e) + ‖e‖2 − µ‖w‖2 ≤ 0 (3.83)

where V̇ (e) is the time derivative of the classical quadratic Lyapunov function V (e) =

eTPe, P = PT > 0, which is commonly used to analyse theH∞ stability of the estimation

error. Thus, by calculating W along the trajectories of (3.80), we obtain

W = eT

In +

AL(ρ) +

m,ni∑
i,j=1

φijHijHKi

T

P + P

AL(ρ) +

m,ni∑
i,j=1

φijHijHKi


 e

+wT

EL(ρ) +

m,ni∑
i,j=1

φijHijDKi

T

Pe+ eTP

EL(ρ) +

m,ni∑
i,j=1

φijHijDKi

w

−µwTw. (3.84)

Hence, W < 0 if the following holds

Ψ︷ ︸︸ ︷
ATL(ρ)P + PAL(ρ) + In PEL(ρ)

ETL(ρ)P −µIz

+

m,ni∑
i,j=1

φij



XT
ij︷ ︸︸ ︷

PHij

0


Yi︷ ︸︸ ︷[

HKi DKi

]
+YTi Xij


≤ 0

(3.85)
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Many methods can be applied to solve the LMI (3.85), however the resulted conditions

may be conservative. Thus, we will provide in Theorem 4 a suitable and enhanced LMI

condition to cope with the conservatism issue.

Theorem 4. If there exist symmetric positive definite matrices P ∈ Rn×n, Si ∈ Rni×ni

and matrices Rj ∈ Rp×n, Yji ∈ Rp×ni, i = 1, . . .m, j = 0, . . . s, of appropriate dimen-

sions so that the following convex optimization problem is solvable

min(µ) subject to (3.87) (3.86)



Ψ︷ ︸︸ ︷
A
(
P,Rj , ρ

)
E
(
P,Rj , ρ

)

(?) −µIz

 [
ΣT

1 . . . ΣT
m

]

(?) −ΛS


≤ 0 (3.87)

with

A
(
P,Rj , ρ

)
= AT0 P + PA0 − CTR0 −RT0 C + In +

s∑
j=1

ρj

(
ATj P + PAj − CTRj −RTj C

)
E
(
P,Rj , ρ

)
= PE −RT0 D −

s∑
j=1

ρjRTj D (3.88)

and

Σi =
[
ΣT
i1 . . . ΣT

ini

]T
, ΣT

ij =

PHij
0

+

H
T
i Si − CTY0

i −
s∑
l=1

ρjC
TY li

−DTY0
i −

s∑
l=1

ρjD
TY li

 (3.89)

Λ = block-diag
(

Λ1, ...,Λm

)
, Λi = block-diag (Λi1, . . . ,Λini) , Λij =

2

bij
Ini (3.90)

S = block-diag
(
S1, . . . ,Sm

)
, Si = block-diag

(
Si, . . . ,Si︸ ︷︷ ︸
ni times

)
(3.91)
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then, the H∞ criterion (3.78) is satisfied with ν = λmax(P). The observer gains Lj and

Kj
i are to be computed by

Lj = P−1RTj , Kj
i = S−1

i (Yji )T , i = 1, . . .m, j = 0, . . . s. (3.92)

Proof. From Lemma 2, we deduce that for all symmetric positive definite matrices Sij
and scalars, we have

XT
ijYi + YT

i Xij ≤
1

2

[
Xij + SijYi

]T
S−1
ij

[
Xij + SijYi

]
(3.93)

Regarding the form of the matrix Yi, the fact that it does not depend on the index j

and depends on the same Ki(ρ), then to obtain an LMI we take Sij = Si , ∀(i, j).

Consequently, from (3.21) and the fact that without loss of generality aij = 0, inequal-

ity (3.85) is satisfied if

Ψ +

m,ni∑
i,j=1

(
ΣT
ij

(
− 2

bij
Si
)−1

Σij

)
≤ 0. (3.94)

Therefore, from Schur lemma, inequality (3.94) is equivalent to


Ψ

[
Σ1 . . . Σm

]

(?) −ΛS

 ≤ 0 (3.95)

Finally, with change of variables Rj = LTj P and Yji = (Kj
i )
TSi, the inequality (3.95)

becomes identical to (3.87). Hence, theH∞ criterion (3.78) is satisfied with the minimum

µ obtained by (3.86). This ends the proof.

3.4.4 Discrete LMI-Based Nonlinear State Observer

Usually, in real applications, the observer operates in discrete time and is driven by

discrete time measurements (sampled data) [147]. Consequently we will provide, in this

section, the discrete version of the previously designed observers in Section 3.4.2 and
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Section 3.4.3. Therefore, we will investigate the general class of discrete-time systems

described by the following equations

 xk+1 = A(ρk)xk +Bγ(xk) + g(uk, k)

yk = Cxk
(3.96)

where xk ∈ Rn is the state vector, yk ∈ Rp is the output measurement, uk ∈ Rq is an

input vector and ρk ∈ Rs is an L∞ bounded and known parameter. The affine matrix

A(ρk) is expressed under the form

A(ρk) = A0 +
s∑
j=1

ρjkAj (3.97)

with

ρjmin ≤ ρ
j
k ≤ ρ

j
max (3.98)

which means that the parameter ρk belongs to a bounded convex set for which the set

of 2s vertices can be defined by

Vρ =
{
% ∈ Rs : %j ∈ {ρjmin, ρ

j
max}

}
. (3.99)

The matrices Ai ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n are constant. The nonlinear function

γ : Rn −→ Rm is assumed to be globally Lipschitz. It is obvious that Bγ(.) can always

be written under the detailed form

Bγ(xk) =

m∑
i=1

Biγi(

ϑi︷ ︸︸ ︷
Hixk) (3.100)

where Hi ∈ Rni×n and Bi is the ith column of the matrix B.

In order to estimate the missing state variables of the discrete model (3.96), we propose

the following discrete time nonlinear state observer

x̂k+1 = A(ρk)x̂k +
m∑
i=1

Biγi(ϑ̂i) + g(yk, uk) + L(ρk)
(
yk − Cx̂k

)
(3.101)

with

ϑ̂i = Hix̂k +Ki(ρk)
(
yk − Cx̂k

)
(3.102)
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where x̂k is the estimate of xk, and

L(ρk) = L0 +
s∑
j=1

ρjkLj , Ki(ρk) = K0
i +

s∑
j=1

ρjkK
j
i (3.103)

The aim consists in finding the observer parameters Li ∈ Rn×p and Kj
i ∈ Rni×p so that

the estimation error

ek = xk − x̂k (3.104)

decreases asymptotically towards zero.

Since γ(.) is assumed to be globally Lipschitz, then from Lemma 1 and equation (3.100),

there exist zi ∈ Co(ϑi, ϑ̂i), functions φij : Rni −→ R, and constants aij , bij , such that

B(γ(xk)− γ(x̂k)) =

m,ni∑
i,j=1

φij(zi)Hij
(
ϑi − ϑ̂i

)
(3.105)

with

aij ≤ φij(zi) ≤ bij (3.106)

where

φij(zi) =
∂γi

∂ϑji
(zi), Hij = Bieni(j) (3.107)

For shortness, we set φij , φij(zi).

Using equations (3.100),(3.102) and (3.105) we obtain

B(γ(xk)− γ(x̂k)) =

m,ni∑
i,j=1

φijHij
(
Hi −Ki(ρk)C

) ek (3.108)

Hence, by using equation (3.96), (3.101) and (3.108) we obtain the following dynamic

equation of the estimation error (3.104)

ek+1 =

A(ρk)− L(ρk)C +

m,ni∑
i,j=1

φijHij (Hi −Ki(ρk)C)

 ek (3.109)

In the sequel, we will provide in Theorem 5 the LMI conditions for which the estimation

error is asymptotically stable around zero.
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Theorem 5. If there exist symmetric positive definite matrices P ∈ Rn×n, Si ∈ Rni×ni

and matrices Xj ∈ Rp×n, Yji ∈ Rp×ni, i = 1, . . . ,m, j = 0, . . . , s, of appropriate dimen-

sions so that the following LMI conditions are feasible


M(ρk)

[
ΠT

1 . . . ΠT
m

]

(?) −ΛS

 < 0, ∀ρk ∈ Vρ (3.110)

with

M(ρk) =


−P M12(ρk)

(?) −P

 (3.111)

M12(ρk) =
(
AT0 P− CTX0

)
+

s∑
l=1

ρlk
(
ATl P− CTXl

)
(3.112)

Πi =
[
ΠT
i1 . . .Π

T
ini

]T
, ΠT

ij =

 0

PHij

+

H(Si,Y li)
0

 (3.113)

H
(
Si,Y li

)
= HT

i Si − CT
(
Y0
i +

s∑
l=1

ρlkY li

)
(3.114)

Λ = block-diag
(

Λ1, ...,Λm

)
, Λi = block-diag (Λi1, . . . ,Λini) , Λij =

2

bij
Ini (3.115)

S = block-diag
(
S1, . . . ,Sm

)
, Si = block-diag

(
Si, . . . ,Si︸ ︷︷ ︸
ni times

)
(3.116)

then, the estimation error converges asymptotically towards zero. Consequently, the

observer parameters Lj and Kj
i are to be computed as follows

Lj = P−1X Tj , Kj
i = S−1

i (Yji )T , i = 1, . . .m, j = 0, . . . s. (3.117)

Proof. We use the following quadratic Lyapunov function to perform the stability anal-

ysis of the estimation error

V (ek) = eTk Pek, P = PT > 0 (3.118)
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By calculating ∆V = V (ek+1)− V (ek) along the trajectories of (3.109), we obtain

∆V = eTk


AL(ρk) +

m,ni∑
i,j=1

φijHijHKi

T

P

×

AL(ρk) +

m,ni∑
i,j=1

φijHijHKi

− P

 e (3.119)

with

AL = A(ρk)− L(ρk)C, HKi = Hi −Ki(ρk)C (3.120)

Hence, ∆V < 0 if the following inequality holds

AL(ρk) +

m,ni∑
i,j=1

φijHijHKi

T

P×

AL(ρk) +

m,ni∑
i,j=1

φijHijHKi

− P < 0. (3.121)

Inequality (3.121) is equivalent, by Schur lemma, to


−P

(
AL(ρk) +

m,ni∑
i,j=1

φijHijHKi

)T
P

(?) −P

 < 0 (3.122)

On the other side, inequality (3.122) can be rewritten under the form

M(ρk)︷ ︸︸ ︷
−P ATL(ρk)P

(?) −P

+

m,ni∑
i,j=1

φij



XT
ij︷ ︸︸ ︷
0

PHij


Yi︷ ︸︸ ︷[

HKi 0
]

+YTi Xij


< 0. (3.123)

Now, by applying Lemma 2 we have

XTijYi + YTi Xij ≤
1

2

(
Xij + SijYi

)T
S−1
ij

Πij︷ ︸︸ ︷(
Xij + SijYi

)
for any symmetric positive definite matrices Sij . Since the matrix block Yi does not

depend on the index j and depends on the same Ki(ρk), then to obtain an LMI, we are
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constrained to put

Sij = Si, ∀(i, j)

with Si ∈ Rni×ni .

Consequently, from (3.106) and the fact that aij = 0, inequality (3.123) holds if

M(ρk)−
m,ni∑
i,j=1

(
ΠT
ij

(
− 2

bij
Si
)−1

Πij

)
< 0. (3.124)

Therefore, from Schur lemma, inequality (3.124) is equivalent to


M(ρk)

[
ΠT

1 . . . ΠT
m

]

(?) −ΛS

 < 0 (3.125)

Finally, we use the change of variables Xi = LTi P and Yji = (Kj
i )
TSi, and since (3.125) is

affine in ρk, then the convexity principle [158] leads to (3.110). This ends the proof.

3.4.5 Discrete LMI-Based H∞ Nonlinear State Observer

In this section we will enhance the designed discrete time nonlinear observer in Section

3.4.4 to account for some disturbances affecting the system dynamics and corrupting the

measurements. Therefore, we consider the following class of systems

 xk+1 = A(ρk)xk +Bγ(xk) + g(uk, k) + Ewk

yk = Cxk +Dwk
(3.126)

where the model parameters are the same as those defined for the model (3.96), and

wk ∈ Rz is the disturbance L2 bounded vector. The matrices E ∈ Rn×z and D ∈ Rp×z

are constant.

In order to reconstruct the missing state variables of the system (3.126), we use the same

nonlinear observer structure (3.101). However, this time we target to find the observer

gains Li ∈ Rn×p and Kj
i ∈ Rni×p so that the estimation error ek = xk − x̂k be H∞

asymptotically stable. Or to put it in another way, we want to find the observer gains

such that H∞ criterion (3.78) is satisfied.
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From Lemma 1 and using equations (3.100), (3.102), (3.106), (3.107), (3.126) and since

ϑi − ϑ̂i =
(
Hi −Ki(ρk)C

)
ek −Ki(ρk)Dwk (3.127)

then, we have

B(γ(xk)− γ(x̂k)) =

m,ni∑
i,j=1

φijHij
(
Hi −Ki(ρk)C

) ek −
m,ni∑
i,j=1

φijHijKi(ρk)D

wk
(3.128)

Therefore, the difference equation of the estimation error can be obtained as

ek+1 =

AL(ρk) +

m,ni∑
i,j=1

φijHijHKi

 ek +

EL(ρk) +

m,ni∑
i,j=1

φijHijDKi

wk (3.129)

with

AL = A(ρk)− L(ρk)C, HKi = Hi −Ki(ρk)C. (3.130)

EL = E − L(ρk)D, DKi = −Ki(ρk)D. (3.131)

Usually, a quadratic Lyapunov function is used to analyse the H∞ stability of the esti-

mation error (3.129). That is to use

V (ek) = eTk Pek, P = PT > 0 (3.132)

Consequently the H∞ criterion (3.78) is satisfied if the following holds

W , ∆V + ‖e‖2 − µ‖w‖2 ≤ 0. (3.133)

where ∆V = V (ek+1)− V (ek).

The main results related to the convergence analysis of the estimation error (3.129) are

summarized in Theorem 6, which provides new enhanced LMI conditions.

Theorem 6. If there exist symmetric positive definite matrices P ∈ Rn×n, Si ∈ Rni×ni,
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and matrices Xj ∈ Rp×n, Yji ∈ Rp×ni, i = 1, . . . ,m, j = 0, . . . , s, of appropriate dimen-

sions so that the following convex optimization problem is solvable

min(µ) subject to (3.135) (3.134)


M(%)

[
ΠT

1 . . . ΠT
m

]

(?) −ΛS

 < 0, ∀% ∈ Vρ (3.135)

with

M(%) =



−P + In 0 M13(%)

0 −µIz M23(%)

M>13(%) M>23(%) −P


(3.136)

M13(%) =
(
AT0 P− CTX0

)
+

s∑
l=1

%l
(
ATl P− CTXl

)
(3.137)

M23(%) = E>P−D>
(
X0 +

s∑
l=1

%lXl

)
(3.138)

Πi =
[
ΠT
i1 . . .Π

T
ini

]T
, ΠT

ij =


H
(
Si,Y li

)
D
(
Si,Y li

)
PHij

 (3.139)

H
(
Si,Y li

)
= HT

i Si − CT
(
Y0
i +

s∑
l=1

%lY li

)
(3.140)

D
(
Si,Y li

)
= −DT

(
Y0
i +

s∑
l=1

%lY li

)
(3.141)

Λ = block-diag
(

Λ1, ...,Λm

)
, Λi = block-diag (Λi1, . . . ,Λini) , Λij =

2

bij
Ini (3.142)

S = block-diag
(
S1, . . . ,Sm

)
, Si = block-diag

(
Si, . . . ,Si︸ ︷︷ ︸
ni times

)
(3.143)
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then, the estimation error satisfies the H∞ criterion (3.78) with ν = λmax(P). Conse-

quently, the observer parameters Lj and Kj
i are to be computed as follows:

Lj = P−1X Tj , Kj
i = S−1

i (Yji )T .

Proof. By calculating W (3.133) along the trajectories of (3.129), we obtain

W = eTk


AL(ρk) +

m,ni∑
i,j=1

φijHijHKi

T

P ×

AL(ρk) +

m,ni∑
i,j=1

φijHijHKi

− P + In

 ek
+ wTk


EL(ρk) +

m,ni∑
i,j=1

φijHijDKi

T

P ×

EL(ρk) +

m,ni∑
i,j=1

φijHijDKi

− µIz
wk

+ eTk


AL(ρk) +

m,ni∑
i,j=1

[
φijHijHKi

]T

P ×

EL(ρk) +

m,ni∑
i,j=1

φijHijDKi

wk
+ wTk


EL(ρk) +

m,ni∑
i,j=1

φijHijDKi

T

P ×

AL(ρk) +

m,ni∑
i,j=1

[
φijHijHKi

] ek
which is negative if the following matrix inequality holds

ΣT
11PΣ11 − P + In ΣT

11PΣ22

(?) ΣT
22PΣ22 − µIz

 < 0 (3.144)

where

Σ11 = AL(ρk) +

m,ni∑
i,j=1

φijHijHKi (3.145)

and

Σ22 = EL(ρk) +

m,ni∑
i,j=1

φijHijDKi (3.146)
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Using the Schur lemma we deduce thatW < 0 if the subsequent matrix inequality holds:




−P + In 0

0 −µIz





(
AL(ρk) +

m,ni∑
i,j=1

[
φijHijHKi

])T
P

(
EL(ρk) +

m,ni∑
i,j=1

[
φijHijDKi

])T
P



(?) −P


< 0 (3.147)

which can be rewritten under the following form:

Ψ︷ ︸︸ ︷


−P + In 0

0 −µIz



A>L (ρk)P

E>L (ρk)P



(?) −P


+

m,ni∑
i,j=1

φij



XT
ij︷ ︸︸ ︷

0

0

PHij


Yi︷ ︸︸ ︷[

HKi DKi 0
]

+YTi Xij


< 0

(3.148)

Now, by applying Lemma 2 we have

XTijYi + YTi Xij ≤
1

2

(
Xij + SijYi

)T
S−1
ij

Πij︷ ︸︸ ︷(
Xij + SijYi

)
for any symmetric positive definite matrices Sij . Since the matrix block Yi does not

depend on the index j and depends on the same Ki(ρk), then to obtain an LMI, we need

to put

Sij = Si, ∀(i, j)

with Si ∈ Rni×ni .
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Consequently, from (3.60) and the fact that aij = 0, inequality (3.148) holds if

Ψ−
m,ni∑
i,j=1

(
ΠT
ij

(
− 2

bij
Si
)−1

Πij

)
< 0. (3.149)

Moreover, by Schur lemma, inequality (3.149) is equivalent to


Ψ

[
ΠT

1 . . . ΠT
m

]

(?) −ΛS

 < 0 (3.150)

Finally, we use the change of variables Xi = LTi P and Y li = (K l
i)
TSi, and since (3.150) is

affine in ρk, then the convexity principle [158] leads to (3.135). This ends the proof.

3.4.6 Application and Simulation Results

The aim of this section is to apply and compare the designed nonlinear observers in

Sections 3.4.2-3.4.5. In order to prevent recurrence, we will first compare the designed

continuous nonlinear observers in presence of the same disturbances in dynamics and

measurements. Then, we compare the designed discrete time nonlinear observers in

presence different disturbances in dynamics and measurements.

3.4.6.1 Continuous Case

In order to apply the continuous nonlinear observers designed in Sections 3.4.2 and 3.4.3

(with and without including the H∞ criterion), we first write the AD model (2.11) under

the form (3.9a), (3.9b) and (3.77), respectively. To do so, we use the same parameters

given by equations (3.48)-(3.51), and for simulation, we choose the matrices E and D

to be equal to

E = [0.1, 0.2, 1, 0.1, 0.3, 0.2]T , D = [0.5, 0.4, 2]T (3.151)

Moreover, for the nonlinear observer (3.55)-(3.57) design, we use the same parameters

given in equations (3.220), (3.53).

The simulation has been run for ρmin = 0.1 day−1, ρmax = 0.9 day−1, S1in = 16

g/l, S2in = 170 mmol/l, Cin = 76.15 mmol/l, Zin = 200 mmol/l, Zad = 700 mmol/l,
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S2ad = 0 mmol/l, and the parameter values given in Table 2.2. After solving the LMI

conditions (3.63) given by Theorem 3, which has been found to be feasible by using the

LMI Toolbox of Matlab, we have obtained the following observer gains

L0 =



70.4615 −26.3655 0.0000

−1.8869 0.6945 −0.0000

−27.5487 427.0033 0.0000

−0.7332 −1.5253 −0.0000

−298.0623 −421.9481 −0.0000

−0.0000 −0.0000 1.0002


, L1 =



97.6669 21.8408 0.0000

−2.6803 −0.5943 −0.0000

128.2053 80.4261 −0.0000

−1.7796 −0.6275 −0.0000

−635.4521 −208.7999 −0.0000

−0.0000 −0.0000 −0.8861



K10 =

 0.8513 0.1385 0.0000

−0.4132 0.3698 −0.0000

 , K11 =

 0.0029 −0.0043 −0.0000

−0.0072 0.0090 −0.0000



K20 =

 −0.0288 0.7702 0.0000

−0.1227 −0.9769 −0.0000

 , K21 =

 −0.0008 −0.0057 −0.0000

0.0009 0.0060 −0.0000


Likewise, after solving the optimisation problem (3.86) given in Theorem 4, we have

obtained the following H∞ observer gains

L0 =



67.2351 −25.5664 −11.6455

−1.8176 0.6750 0.4194

−76.9579 386.5060 −57.5617

−0.4787 −1.3114 0.4320

−220.7042 −373.8534 130.0967

−0.2057 −0.0151 0.1545


, L1 =



97.0686 33.0996 −30.8871

−2.7416 −0.8949 0.8644

114.2877 49.4467 −38.4613

−1.7284 −0.6196 0.5560

−616.4464 −222.5452 198.6207

0.2337 0.3001 −0.1185



K10 =

 0.7300 0.0768 −0.1979

−0.6614 0.4055 0.0843

 , K11 =

 0.0002 −0.0008 0.0001

−0.0040 0.0036 0.0003



K20 =

 −0.1165 0.6410 −0.0991

−0.2875 −1.1785 0.3076

 , K21 =

 0.0008 −0.0000 −0.0002

−0.0018 0.0001 0.0004


and µ = 3.5845 e−9.

Besides, for simulation, we have initialized the system and the observer by x(0) =

[2, 0.5, 12, 0.7, 53.5, 55]T and x̂(0) = [2, 1.5, 12, 0.2, 40, 55], respectively. We have also

injected in the system dynamics and measurements the disturbance depicted in Fig-

ure 3.11. After processing the simulation for 100 days, we have obtained the results
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Figure 3.11: Disturbance in dynamics and measurements (w)

depicted in Figures 3.12-3.17 where we can see clearly that, although the large intial

estimation error, both the continuous nonlinear observer designed in Sections 3.4.2 and

the continuous H∞ nonlinear observer designed in Section 3.4.3 behave similarly when

no perturbation is affecting the system dynamics and measurements. However, once

the system dynamics and measurements get disturbed, the performances of the observer

which does not include the H∞ criterion decrease and the H∞ observer proves to be

robust and rejects very well the perturbations. In order to give an idea on the level of

attenuation of the disturbances by the designed H∞ observer, we compare the estima-

tion errors of the two observers in Figures 3.18-3.20. These figures give a quite good

idea on the level of disturbance attenuation by the H∞ observer. Thus, we conclude

that the inclusion of the H∞ criterion (3.78) in the observer design makes it robust to

disturbances and render it more suitable for the AD systems which are often exposed to

disturbances [45].
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Figure 3.12: Substrate concentration x1 and its estimate x̂1 (g/l).
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Figure 3.13: Acidogenic bacteria x2 and its estimate x̂2 (g/l).
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Figure 3.14: Acetate concentration x3 and its estimate x̂3 (mmol/l).
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Figure 3.15: Mathenogenic bacteria x4 and its estimate x̂4 (g/l).
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Figure 3.16: Inorganic carbon x5 and its estimate x̂5 (mmol/l).
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Figure 3.17: Alkalinity concentration x6 and its estimate x̂6 (mmol/l).
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Figure 3.18: Estimation error e2 = x2 − x̂2.
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Figure 3.19: Estimation error e4 = x4 − x̂4.
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Figure 3.20: Estimation error e5 = x5 − x̂5.

3.4.6.2 Discrete Case

In this section, we target to apply the discrete time nonlinear observers, designed in

Sections 3.4.4 and 3.4.5, to the AD model (2.11). Hence, before applying the considered

discrete observers, we need first to write the model (2.11) under the discrete form (3.96)

and (3.126).

Generally, for a given continuous-time nonlinear model, a closed form solution for an

exact discretization is difficult to find explicitly, then we need to have approximate

discrete-time models. In this section, we will present an Euler approximation which is

important and easy to derive and it keeps the form of the original system. To obtain

this approximation we assume that the control inputs are constant during the sampling

intervals [kTs, (k+ 1)Ts], where Ts is the sampling period. Moreover, for simulation, we

will take the same model outputs as in the previous Sections 3.4.6.1 and 3.4.1.1, that is

to say the variables qc, x1, x3 and x6 are available for measurement. Thus, the system
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(2.11) can be easily written in the form (3.96) using the following parameters

ρk = uout(k), A0 = I6, A1 = −Ts × block-diag(1, α, 1, α, 1, 1) (3.152)

B = Ts ×

 −k1 1 k2 0 k4 0

0 0 −k3 1 k5 0

T , γ(x) =

 µ1(x1)x2

µ2(x3)x4

 (3.153)

g(u, t) = Ts ×
[
u1S1in 0 u1(S2in + S2ad) 0 u1Cin − qc u1Zin + u2Zad

]T
(3.154)

and

C =


1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1


Besides, as already mentioned, for an illustrative simulation we will suppose that the

disturbances affecting the system dynamics are different from those affecting the mea-

surements. Therefore, to obtain the model form (3.126), will need to put the matrices

E and D as defined in Remark 4. This means to set

E =

 0.01 0.02 0.1 0.01 0.03 0.02

0 0 0 0 0 0

T , D =

 0 0 0

0.1 0.5 1

T (3.155)

Regarding the observer design, we have, m = 2, s = 1, γ1(x) = µ1(x1)x2, n1 = 2,

γ2(x) = µ2(x3)x4, n2 = 2 and

H1 =

 1 0 0 0 0 0

0 1 0 0 0 0

 , H2 =

 0 0 1 0 0 0

0 0 0 1 0 0



B1 = Ts ×
[
−k1 1 k2 0 k4 0

]T
, B2 = Ts ×

[
0 0 −k3 1 k5 0

]T
The simulation has been run for the same operating condition as the continuous time

case, and the sampling time has been set to Ts = 0.001 day, to emulate the sampling

time that a sensor has experimentally [119].



Chapter 3. State Estimation 91

By using the LMI MATLAB Toolbox, we have solved the LMI conditions (3.110) given

in Theorem 5 and we have obtained the following observer gains

L0 =



0.5415 0.0074 0.0000

−0.0276 −0.0003 −0.0000

−0.0027 0.4947 0.0000

−0.0209 −0.0072 −0.0000

−2.4631 −0.6518 −0.0000

0.0000 0.0000 0.4997


, L1 =



0.8734 0.0119 −0.0000

−0.0444 −0.0005 0.0000

−0.0042 0.7979 −0.0000

−0.0337 −0.0116 0.0000

−3.9726 −1.0514 0.0000

−0.0000 −0.0000 0.8059



K10 =

 0.4985 −0.0024 0.0000

−0.0541 0.0504 0.0000

 , K11 =

 0.8040 −0.0039 −0.0000

−0.0870 0.0809 −0.0000



K20 =

 0.0014 0.5012 0.0000

−0.0944 −0.0524 0.0000

 , K21 =

 0.0022 0.8084 −0.0000

−0.1524 −0.0846 −0.0000


Likewise, using the same LMI toolbox of Matlab, we have solved the optimization

problem (3.134) given by Theorem 6, and it has been found that the gains of the H∞
nonlinear state observer to be equal to

L0 =



0.9848 −0.0039 −0.0657

−0.1759 −0.0393 0.3552

−0.0768 0.9801 −0.3338

−0.0888 −0.0240 0.1850

−6.1235 −1.6373 4.3213

−0.1501 −0.0388 0.3482


, L1 =



−0.0007 0.0001 0.0011

0.0004 0.0001 0.0009

0.0026 −0.0003 0.0117

0.0002 0.0001 0.0004

0.0051 0.0013 −0.0128

0.0005 0.0001 0.0007



K10 =

 0.9856 −0.0037 −0.0620

−0.1814 −0.0407 0.3412

 , K11 =

 −0.0009 −0.0002 −0.0016

0.0062 0.0016 0.0269



K20 =

 −0.0810 0.9791 −0.3514

−0.1070 −0.0287 0.1085

 , K21 =

 0.0083 0.0022 0.0413

0.0247 0.0064 0.1091


with µ = 93.1623.

Furthermore, for simulation, we have initialized the system and the observer by x(0) =

[2, 0.5, 12, 0.7, 53.5, 55]T and x̂(0) = [2, 1.5, 12, 0.2, 40, 55], respectively (as the continuous

case). Moreover, the simulated model dynamics have been disturbed by injecting a step

signal disturbance to the system, and corrupting the measurements by a sinusoidal signal
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as depicted in Figure 3.21. Actually, theoretically, the disturbance signals could be of

any shape, the most important is to check if the design assumptions are satisfied ( w ∈ Rz

is an L2 bounded vector) and if the state variables of the model remain positive or null

under the effect of the injected disturbances (otherwise, the results become meaningful

physically, since the state variables represent concentrations that can not be negative).

The simulation results are depicted in Figures 3.22-3.27.
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Figure 3.21: Disturbance in dynamics (w1) and measurements (w2)
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Figure 3.22: Substrate concentration x1 and its estimate x̂1 (g/l).
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Figure 3.23: Acidogenic bacteria x2 and its estimate x̂2 (g/l).
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Figure 3.24: Acetate concentration x3 and its estimate x̂3 (mmol/l).

time (days)
0 20 40 60 80 100 120

M
et
h
an

og
en
ic

b
ac
te
ri
a
x
4
an

d
it
s
es
ti
m
at
e
x̂
4
(g
/l
)

0

0.5

1

1.5

2

2.5

3
x4

x̂4 with H∞ criterion

x̂4 without H∞ criterion

Figure 3.25: Mathenogenic bacteria x4 and its estimate x̂4 (g/l).
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Figure 3.26: Inorganic carbon x5 and its estimate x̂5 (mmol/l).
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Figure 3.27: Alkalinity concentration x6 and its estimate x̂6 (mmol/l).
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From the simulation results, Figures 3.22-3.27, we can see that although the considerable

range of mismatches between the initial values of the estimated and the simulated system

concentrations, both nonlinear observers designed in Sections 3.4.4 and 3.4.5, including

or not the H∞ criterion, converge asymptotically to the model state variables. However,

convergence of the nonlinear observers designed in Section 3.4.4 ( without including the

H∞ criterion) to the model state variables is the fastest when no disturbance is affecting

the system. But, once the system dynamics or measurements get disturbed, the observer

performances decrease and the observer including the H∞ criterion, designed in Section

3.4.3 turns to be the most robust, and naturally its convergence to the real simulated

state becomes faster. In order to visualize this fact and give an idea on the level of

disturbance effect attenuation that could be obtained when we include the H∞ criterion

in the observer design, we compare the estimation errors resulted from the two discrete

time observers in Figures 3.28-3.30. As it can be seen from the later figures, although the

effect of the injected disturbances in the system, the proposed H∞ nonlinear observer

shows satisfactory results and good performances. This illustrates how the inclusion of

the H∞ criterion in the observer design strength its robustness against the encountered

disturbances.
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Figure 3.28: Estimation error e2 = x2 − x̂2.

3.4.7 Discussion and Extention to the Nonlinear Output Case

3.4.7.1 Discussion

In order to reconstruct the unmeasurable state variables of the AD model (2.11), we

have designed in Section 3.4.1 an invariant like state observer which has been applied,

by simulation, with success to the model. Then, due to some feasibility restrictions
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Figure 3.29: Estimation error e4 = x4 − x̂4.
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Figure 3.30: Estimation error e5 = x5 − x̂5.

(domain of definition of the logarithmic functions (3.24)), we have proposed in Section

3.4.2 to design a nonlinear state observer of the form of the generalized Arcak’s observer

[148]. The later contains two terms of correction, one in the dynamic equations as the

conventional Luenberger observer, and a second term of correction inside the nonlinear

part of the system. This addition of a second term of correction (through the gains

K0
i , . . . ,K

s
i in (3.57), in our study) promotes the observer design by adding more degrees

of freedom in its synthesis. But, it has been found feasible and applicable also if you

omit the second term of correction. In other word, it is possible to design a Luenberger

like observer for the system (3.9). Hence, the observer structure becomes

˙̂x = A(ρ)x̂+
m∑
i=1

Biγi(ϑ̂i) + g(u, t) + L(ρ)(y − Cx̂) (3.156)

where x̂ is the estimate of x, and

ϑ̂i = Hix̂, and, L(ρ) = L0 +

s∑
j=1

ρjLj. (3.157)
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The objective is to find the observer gains Li ∈ Rn×p so that the estimation error

e = x− x̂ (3.158)

decreases asymptotically towards zero.

Since the design methodology is similar to the ones detailed for the nonlinear observers

designed in Sections 3.4.2 and 3.4.3, we will simply summarize in Theorems 7 and 8 the

LMI conditions under which the estimation error (3.158), obtained by the Luenberger like

observer (3.156), is asymptotically stable and H∞ asymptotically stable, respectively.

Theorem 7. The estimation error obtained by applying the Luenberger like observer

(3.156) to the system (3.9a), (3.9b) decreases asymptotically towards zero, if there exist

symmetric positive definite matrices P ∈ Rn×n, Sij ∈ Rni×ni for j = 1, . . . , ni, i =

1, . . . ,m, and matrices Rj ∈ Rp×n, j = 0, . . . , s, so that the following LMI conditions

are feasible 
A
(
P,Rj , ρ

) Σ︷ ︸︸ ︷[
Σ1 . . . Σm

]

(?) −ΛM

 ≤ 0 (3.159)

with

A
(
P,Rj , ρ

)
= AT

0 P + PA0 − CTR0 −RT
0 C +

s∑
j=1

ρj

(
AT

j P + PAj − CTRj −RT
j C
)

(3.160)

and

Σi =
[
N 1
i

(
P,Si1

)
. . . N ni

i

(
P,Sini

)]
, N j

i

(
P,Sij

)
= PHij +HT

i Sij (3.161)

Λ = block-diag
(

Λ1, ...,Λm

)
, Λi = block-diag

(
Λ1
i , . . . ,Λ

ni
i

)
, Λji =

2

bij
Ini (3.162)

M = block-diag
(
M1, . . . ,Mm

)
, Mi = block-diag

(
Si1, . . . ,Sini

)
(3.163)

Finally, the observer gains are to be computed as

Lj = P−1RTj for all j = 0, . . . , s. (3.164)
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Theorem 8. The estimation error obtained by applying the Luenberger like observer

(3.156) to the system (3.77) is H∞ asymptotically stable, if there exist symmetric positive

definite matrices P ∈ Rn×n, Sij ∈ Rni×ni for j = 1, . . . , ni, i = 1, . . . ,m, and matrices

Rj ∈ Rp×n, j = 0, . . . , s so that the following convex optimization problem is solvable

min(µ) subject to (3.166) (3.165)




A
(
P,Rj , ρ

)
E
(
P,Rj , ρ

)

(?) −µIz


Σ︷ ︸︸ ︷[

Σ1 . . . Σm

]

(?) −ΛM


≤ 0 (3.166)

with

A
(
P,Rj , ρ

)
= AT0 P + PA0 − CTR0 −RT0 C + In +

s∑
j=1

ρj

(
ATj P + PAj − CTRj −RTj C

)
E
(
P,Rj , ρ

)
= PE −RT0 D −

s∑
j=1

ρjRTj D (3.167)

and

Σi =
[
N 1
i

(
P,Si1

)
. . . N ni

i

(
P,Sini

)]
, N j

i

(
P,Sij

)
=

PHij
0

+

HT
i

0

Sij (3.168)

Λ = block-diag
(

Λ1, ...,Λm

)
, Λi = block-diag

(
Λ1
i , . . . ,Λ

ni
i

)
, Λji =

2

bij
Ini (3.169)

M = block-diag
(
M1, . . . ,Mm

)
, Mi = block-diag

(
Si1, . . . ,Sini

)
(3.170)

then, the H∞ criterion (3.78) is satisfied with ν = λmax(P). Hence, the observer gains

are to be computed as

Lj = P−1RTj for all j = 0, . . . , s. (3.171)



Chapter 3. State Estimation 98

In regard to the discrete time case, we can also design a discrete Luenberger like observer

to the discrete system (3.96). The observer structure reads

x̂k+1 = A(ρk)x̂k +
m∑
i=1

Biγi(ϑ̂i) + g(yk, uk) + L(ρk)
(
yk − Cx̂k

)
(3.172)

with

ϑ̂i = Hix̂k and L(ρk) = L0 +
s∑

j=1

ρj
kLj (3.173)

where x̂k is the estimate of xk. The matrices Li ∈ Rn×p are the observer parameters

to be determined so that the estimation error ek = xk − x̂k converges asymptotically

towards zero.

Following the same design methodology as in Section 3.4.4 and Section 3.4.5, we find

the LMI conditions under which the estimations error obtained by applying the discrete

Luenberger like observer (3.172) to the systems (3.96) and (3.126) is asymptotically

stable and H∞ asymptotically stable, respectively. We will summarize these conditions

in Theorem 9 and Theorem 10, respectively.

Theorem 9. If there exist symmetric positive definite matrices P ∈ Rn×n, Sij ∈ Rni×ni

and matrices Xl ∈ Rp×n, i = 1, . . . ,m, j = 1, . . . , ni, l = 0, . . . , s, of appropriate

dimensions so that the following LMI conditions are feasible


M(ρk)

[
ΣT

1 . . . ΣT
m

]

(?) −ΛS

 < 0, ∀ρk ∈ Vρk (3.174)

with

M(ρk) =


−P M12(ρk)

(?) −P

 (3.175)

M12(ρk) =
(
AT0 P− CTX0

)
+

s∑
l=1

ρlk
(
ATl P− CTXl

)
(3.176)

Σi =
[
ΣT
i1 . . .Σ

T
ini

]T
, ΣT

ij =

 0

PHij

+

HT
i Sij

0

 (3.177)
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Λ = block-diag
(

Λ1, ...,Λm

)
, Λi = block-diag

(
2
bi1

Ini , . . . ,
2
bini

Ini

)

S = block-diag
(
S1, . . . ,Sm

)
, Si = block-diag

(
Si1, . . . ,Sini

) (3.178)

then, the estimation error obtained by applying the discrete Luenberger observer (3.172)

to the system (3.96), converges asymptotically towards zero. Consequently, the observer

parameters Ll are to be computed as follows

Ll = P−1X Tl (3.179)

Ll = P−1X Tl for all l = 0, . . . , s. (3.180)

Theorem 10. If there exist symmetric positive definite matrices P ∈ Rn×n, Sij ∈

Rni×ni, matrices Xl ∈ Rp×n, i = 1, . . . ,m, j = 1, . . . , ni, l = 0, . . . , s, of appropri-

ate dimensions so that the convex optimization problem min(µ) subject to the constraint

(3.181) is solvable,


M(%)

[
ΣT

1 . . . ΣT
m

]

(?) −ΛS

 < 0, ∀% ∈ Vρ (3.181)

with

M(%) =



−P + In 0 M13(%)

0 −µIz M23(%)

M>13(%) M>23(%) −P


(3.182)

M13(%) =
(
AT0 P− CTX0

)
+

s∑
l=1

%l
(
ATl P− CTXl

)
(3.183)

M23(%) = E>P−D>
(
X0 +

s∑
l=1

%lXl

)
(3.184)

Σi =
[
ΣT
i1 . . .Σ

T
ini

]T
, ΣT

ij =


0

0

PHij

+


HT
i Sij

0

0

 (3.185)
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Λ = block-diag
(

Λ1, ...,Λm

)
, Λi = block-diag

(
2
bi1

Ini , . . . ,
2
bini

Ini

)

S = block-diag
(
S1, . . . ,Sm

)
, Si = block-diag

(
Si1, . . . ,Sini

) (3.186)

the, the estimation error obtained by applying the discrete Luenberger like observer

(3.172) to the system (3.126) satisfies the H∞ criterion (3.78) with ν = λmax(P). Con-

sequently, the estimation error is H∞ asymptotically stable and the observer parameters

Ll are to be computed by

Ll = P−1X Tl for all l = 0, . . . , s. (3.187)

The proof of Theorems 7, 8, 9 and 10 have been omitted from the current section in

order to avoid repetition. Nevertheless, they can be easily reproduced by following the

same synthesis philosophy provided in Sections 3.4.2, 3.4.3, 3.4.4 and 3.4.5, respectively.

3.4.7.2 Extension to the Nonlinear Output Case

Often, in AD applications the most cheap and reliable measurements are nonlinear func-

tions of the model state variables [48], [15], [47], especially the gas phase measurements

which are always performed at industrial scale and are reliable. Therefore, with the

aim to match and implement the theoretical results in real AD applications, we take

advantage from these easily performed measurements at industry scale, which are non-

linear functions of the model state variables as in [64] to reconstruct the unmeasurable

variables. Therefore, we extend the observer design methodology to the class of systems

with nonlinear outputs modelled by the following equations

 ẋ = A(ρ)x+Bγ(x) + g(u, t)

y = Cx+ Th(x)
(3.188)

where the model parameters are the same as defined in (3.9), and in addition to that

the matrix T ∈ Rp×q is a constant matrix. The nonlinear function h : Rn −→ Rq is

the nonlinear part of the output signal, which can be verified to be globally Lipschitz

due to the state boundedness proved in Section 2.5. It is obvious that we can write h(x)
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under the detailed form

h(x) =



h1(F1x)
...

hi(

θi︷︸︸︷
Fix )
...

hq(Fqx)


(3.189)

with Fi ∈ Rpi×n.

In order to reconstruct the system states, we consider the following observer structure

˙̂x = A(ρ)x̂+B



γ1(ϑ̂1)
...

γi(ϑ̂i)
...

γm(ϑ̂m)


+ L(ρ)

(
y − ŷ

)
(3.190a)

with

L(ρ) = L0 +
s∑
j=1

ρjLj and, ŷ = Cx̂+ T



h1(θ̂1)
...

hi(θ̂i)
...

hq(θ̂q)


(3.190b)

where

ϑ̂i = Hix̂ and θ̂i = Fix̂ (3.190c)

The observer gains Li ∈ Rn×p are to be determined so that the estimation error e = x−x̂

converges asymptotically towards zero.

Since h(.) is globally Lipschitz, then from Lemma 1 there exist functions

ψij : Rpi × Rpi −→ R

and constants aij , bij , such that

T (h(θ)− h(θ̂)) =

q,pi∑
i,j=1

ψij(zi)Fij
(
θi − θ̂i

)
(3.191)
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with

min(ψij) ≤ ψij(zi) ≤ max(ψij) (3.192)

where

ψij(zi) =
∂hi
∂θi

(zi), and Fij = Tie
T
pi

(j). (3.193)

with Ti is the ith column of the matrix T and

θi ≤ zi ≤ θ̂i (3.194)

For shortness, we set ψij = ψij(zi).

Since θi − θ̂i = Fie, then we have

h(θ)− h(θ̂) =

q,pi∑
i,j=1

ψijFijFie (3.195)

Consequently, the dynamics equation of the estimation error is given by

ė =

AL(ρ) +

m,ni∑
i,j=1

φijHijHi − L(ρ)

q,pi∑
i,j=1

ψijFijFi

 e (3.196)

where AL(ρ) = A(ρ)− L(ρ)C.

Since we know, a priori, that min(ψij) 6= 0 in equation (3.192), then we find more

suitable to write

0 ≤ ψij −min(ψij) ≤ max(ψij)−min(ψij)︸ ︷︷ ︸
bij

(3.197)

and then, to add and subtract min(ψij) from ψij in equation (3.196) as the following

ė =

AL(ρ) +

m,ni∑
i,j=1

φijHijHi − L(ρ)

q,pi∑
i,j=1

(ψij + min(ψij)−min(ψij))FijFi

 e (3.198)
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equivalently, we write

ė =

AL(ρ)− L(ρ)

q,pi∑
i,j=1

min(ψij)FijFi︸ ︷︷ ︸
C

+ (3.199)

m,ni∑
i,j=1

φijHijHi − L(ρ)

q,pi∑
i,j=1

(ψij −min(ψij))︸ ︷︷ ︸
ϕij

FijFi

 e

with

0 ≤ ϕij ≤ bij (3.200)

Now, that the dynamic equation of the estimation error has been obtained (3.199), we

provide in Theorem 11 the LMI conditions to be solved in order to find the observer

gains which make the estimation error asymptotic stable around zero.

Theorem 11. If there exist symmetric positive definite matrices P ∈ Rn×n, Sij ∈

Rni×ni, j = 1, . . . , ni, Sij ∈ Rpi×pi, j = 1, . . . , pi, i = 1, . . . ,m, and matrices Xl ∈ Rp×n,

l = 0, . . . , s, of appropriate dimensions so that the following LMI conditions are feasible


Ψ

[
ΠT

1 . . . ΠT
m

] [
Π
T
1 . . . Π

T
q

]

(?) −ΛS 0

(?) (?) − Λ S

 < 0 (3.201)

where

Ψ = AT0 P + PA0 − CTX0 −X T0 C − C
TX0 −X T0 C + (3.202)

s∑
i=1

ρi

(
ATi P + PTAi − CTXi −X Ti C − C

TXi −X Ti C
)

Πi =
[
ΠT
i1 . . .Π

T
ini

]T
, Πij = HTijP + SijHi (3.203)

Πi =
[
Π
T
i1 . . .Π

T
ipi

]T
, Πij = FTijXl + Sij(−Fi) (3.204)

and

S = block-diag(S1, . . . ,Sm), Si = block-diag(Si1, . . . ,Sini) (3.205)
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Λ = block-diag(Λ1, ...,Λm), Λi = block-diag (Λi1, . . . ,Λini) (3.206)

with

Λij =
2

bij
Ini , (3.207)

and

S = block-diag(S1, . . . ,Sq), Si = block-diag(Si1, . . . ,Sipi) (3.208)

Λ = block-diag(Λ1, ...,Λq), Λi = block-diag
(
Λi1, . . . ,Λipi

)
(3.209)

with

Λij =
2

bij
Ipi (3.210)

Finally, the observer gains are to be computed by

Ll = P−1X Tl for all l = 0, . . . , s. (3.211)

Proof. As usual, to analyse the stability of the estimation error (3.199), we use a

quadratic Lyapunov function

V = eTPe, P = P T > 0

whose derivative V̇ (e) along the trajectories (3.199) is given by

V̇ = eT


AL(ρ)− L(ρ)C +

m,ni∑
i,j=1

φijHijHi − L(ρ)

q,pi∑
i,j=1

ϕijFijFi

T

P

+P

AL(ρ)− L(ρ)C +

m,ni∑
i,j=1

φijHijHi − L(ρ)

q,pi∑
i,j=1

ϕijFijFi

 e (3.212)

We equivalently rewrite equation (3.212) as the following

V̇ = eT

AT
L(ρ)P− CT

LT (ρ)P + PAL(ρ)− PL(ρ)C︸ ︷︷ ︸
Ψ

 e+ eT
m,ni∑
i,j=1

φij

PHij︸ ︷︷ ︸
XT

ij

Hi︸︷︷︸
Yi

+HT
i HT

ijP

 e

+eT
q,pi∑
i,j=1

ϕij

PL(ρ)Fij︸ ︷︷ ︸
XT

ij

(−Fi)︸ ︷︷ ︸
Yij

+(−Fi)
TFT

ijL
T (ρ)P

 e (3.213)
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Now, by applying Lemma 2 we obtain

XTijYi + YTi Xij ≤
1

2

(
Xij + SijYi

)T
S−1
ij

Πij︷ ︸︸ ︷(
Xij + SijYi

)
(3.214)

and

XTijYij + YTijXij ≤
1

2

(
Xij + SijYij

)T
S−1
ij

Πij︷ ︸︸ ︷(
Xij + SijYij

)
(3.215)

for any symmetric positive definite matrices Sij and Sij . Moreover, from (3.21) and

(3.200) and the fact that aij = 0, then inequality V̇ < 0 holds if

Ψ−
m,ni∑
i,j=1

(
ΠT
ij

(
− 2

bij
Sij
)−1

Πij

)
−

q,pi∑
i,j=1

(
Π
T
ij

(
− 2

bij
Sij
)−1

Πij

)
< 0 (3.216)

consequently, by Schur lemma, inequality (3.216) is equivalent to the LMI (3.201). This

ends the proof.

3.4.7.3 Application and Simulation Results

As already challenged previously, we aim to increase the applicability of the proposed

nonlinear observer in real biogas plants, where usually the cheapest and simplest mea-

surements to process are those related to the gas phase. Therefore, we propose in this

section to apply the designed nonlinear observer (3.190) to the AD model (2.11) while

taking the gases flow rate measurements as the nonlinear outputs. Thus, we will use

both the co2 and ch4 gas flow rates (qc and qm, respectively) to design the observer.

Since, we want to design a full order observer, or in other words to reconstruct the full

state vector, then we add the measurements of x1 and x6 as the linear outputs. This

is not regarded as an issue because the measurement of organic substrates and alkalin-

ity are frequently encountered in applications and there exist nowadays very advanced

sensors to perform them [160], [161], [162], [47], [163], [164]. Moreover, this grant us an

exemple where we illustrate how to combine the linear and nonlinear outputs to design

the proposed observer. Nevertheless, we would like to say that even if we had only

the gases measurements qc(x) and qm(x), the system remains detectable and thus, it

is always possible to design an observer. In the following, we will give the parameters

that allow to write the AD model (2.11) in the form (3.188) when considering avail-

able the measurements of x1, x6, qc(x) and qm(x). Thus, to do so, the parameters ρ,
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A0 and A1 remain as defined in (3.48), but this time γ(x) = µ1(x1)x2 only, because

qm(x) = k6µ2(x3)x4 is measured and thus (for shortness, we set sometimes qc(x) = qc

and qm(x) = qm)

B =
[
k1, 1, k2, 0, k4, 0

]T
, γ(x) = µ1(x1)x2 (3.217)

g(u, t) =
[
u1S1in, 0, u1(S2in + S2ad)− k3

k6
qm,

1
k6
qm, u1Cin − k5

k6
qm − qc, u1Zin + u2Zad

]T
(3.218)

C =


1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

 , T =


0 0

0 0

1 0

0 1

 , h(x) =

 qm(x)

qc(x)

 (3.219)

Moreover, for the nonlinear observer (3.190) design, we have

m = 1, s = 1, n1 = 2, γ1(x) = µ1(x1)x2, q = 2, (3.220)

h1(x) = qm(x), p1 = 2, h2(x) = qc(x), p2 = 4, B1 = B (3.221)

and

H1 =

 1 0 0 0 0 0

0 1 0 0 0 0

 , F1 =

 0 0 1 0 0 0

0 0 0 1 0 0



F2 =


0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 , T1 =


0

0

1

0

 , T2 =


0

0

0

1


(3.222)

In order to run an illustrative simulation, we have taken ρmin = 0.1 day−1, ρmax = 0.9

day−1, S1in = 16 g/l, S2in = 170 mmol/l, Cin = 76.15 mmol/l, Zin = 200 mmol/l,

Zad = 700 mmol/l, S2ad = 0 mmol/l, and the parameter values given in Table 2.2.

Moreover, after solving the LMIs (3.201) by using LMI MATLAB Toolbox, we have
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obtained the following observer gains

L0 =



72.8803 −19.9816 −0.1810 −0.0295

−2.0351 0.5502 0.0050 0.0008

−201.6596 55.2874 0.5013 0.0817

0.0021 −0.0006 0.0002 0.0000

−87.5869 24.0129 0.2177 0.0355

0.2292 4.2017 −0.0000 0.0000


(3.223)

L1 = 103 ×



1.8086 −0.5672 0.0000 0.0000

−0.0498 0.0156 −0.0000 −0.0000

−5.0098 1.5693 −0.0000 −0.0000

−0.0001 −0.0000 0.0000 0.0000

−2.1759 0.6816 −0.0000 −0.0000

0.0066 −0.0010 0.0000 0.0000


(3.224)

The control input u1 has been varied during the simulation as represented in Figure
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Figure 3.31: Control input u1

(
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day

)
.

3.31 and we have set u2 = 0.02 day−1. Besides, we have initialized the system and the

observer by x0 = [2, 0.5, 12, 0.7, 53, 49, 55]T and x̂0 = [2, 1, 15, 1.7, 58, 49, 55]T , respec-

tively. After running the simulation for 100 days, we have obtained the results depicted

in Figures 3.32-3.37. As it can be seen from the later figures, the results are promising.

Indeed, over the wide initial estimation error the observer is converging asymptotically

to the simulated system states in relatively short period of time. These results testify the

potential of the design methodology. Of course the design methodology can be extended

to the generalized Arcak’s like observer designed in Section 3.4.2 and the H∞ nonlinear
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observer presented in Section 3.4.3. Furthermore, the observer can be discretized as in

Sections 3.4.4 and 3.4.5.
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Figure 3.32: Substrate concentration x1 and its estimate x̂1 (g/l).
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Figure 3.33: Acidogenic bacteria x2 and its estimate x̂2 (g/l).
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Figure 3.34: Acetate concentration x3 and its estimate x̂3 (mmol/l).

3.5 Conclusion

In this chapter, we have developed a new method to design nonlinear observers for

the AD process. It is based on the use of the DMVT which transforms the nonlinear
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Figure 3.35: Mathenogenic bacteria x4 and its estimate x̂4 (g/l).
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Figure 3.36: Inorganic carbon x5 and its estimate x̂5 (mmol/l).
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Figure 3.37: Alkalinity concentration x6 and its estimate x̂6 (mmol/l).

error to an LPV system. Then, using the LPV techniques and due to the boundedness

of the state variables and the Lipschitz property of the included nonlinearities in the

model, we have synthesized LMI conditions to ensure the asymptotic stability of the

estimation error. The feasibility of obtained LMI conditions has been enhanced by the

use of judicious reformulation of the Young’s inequality.

Different LMI-based nonlinear observers have been proposed for the AD process. The

LMI-based invariant like observer which has been applied with success to our application.
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But, due to its local applicability, we have designed an LMI-based nonlinear observer of

the form of the generalized Arcak’s observer [148]. It has shown satisfactory results when

it was applied to the AD model in absence of disturbances. However, once the system got

disturbed the observer performances decreased and it poorly rejected the perturbation.

Thus, it has been extended by including the H∞ criterion in its synthesis. Positively,

it was applied successfully to the system and has been shown robust to dynamic and

measurement disturbances. Besides, we have shown how to descritize the nonlinear

observers and we have proposed new LMI conditions to ensure their convergence to the

system state variables. The discrete observers were also applier with success to the AD

model. We would like to say that the results were presented in a general way in order to

make them usable for other applications. Moreover, in all the performed simulations we

have selected as much as possible the most encountered measurements in AD processes

at industrial scale.

Furthermore, with the aim to increase application of the proposed design methodology

in real applications (biogas plants especially), we have extended it to the case of non-

linear outputs. Indeed, the nonlinear outputs in biogas plants, at industrial scale, are

the cheapest and the easiest to perform. Hence, we have applied the findings to the AD

system by numerical simulation and firmly the results have been found promising. Ob-

viously, the design methodology for the systems with nonlinear outputs can be extended

to the generalized Arcak’s like observer as in Section 3.4.2, enhanced by including the

H∞ criterion in the observer synthesis as in Section 3.4.3 and finally discritized as in

Sections 3.4.4 and 3.4.5.



Chapter 4

Control of Biogas Plants

4.1 Introduction

In the last decade, a significant interest has been attributed to AD control. As stated in

the main introduction 1, depending on the model complexity and the available measure-

ments, different control strategies have been designed to satisfy some specific criteria.

Among the designed controls for the AM2 model [4] with the aim to control the con-

centration of bicarbonate alkalinity by mean of an added control input to the model,

we find the linearizing control [22] and the input to output linearizing control [120],

[123]. In [22], the objective was to enhance the biogas quality while in [120] and [123]

the objective was to stabilize the digester. Whether in the first or the second control

strategies, the magnitude of the added input was assumed to be very small so that it

could be excluded from the dynamics of the model state variables other than the alka-

linity concentration. This assumption makes the control design easier. Especially, the

input to output linearizing control, where this assumption relax the complexity of the

nonlinear transformation of the system. However, even if the control becomes easier

when neglecting the effect of the added dilution rate in the dynamic of the first fifth

state variables of the model, this is not very consistent.

Another control strategy using the MPC has been proposed in [132] to control the biogas

production for a demand-driven electricity production. The idea is to optimize the plant

feeding according to a fluctuating timetable of energy demand. The control was applied

to a full scale research plant and has shown satisfactory results. However, although

111
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the satisfactory results, the analytical proof of the closed loop system is yet difficult to

prove.

Combining the ideas from [120], [123], [22] and [132], where the alkalinity addition is

used to stabilize the reactor and enhance the biogas quality, and the plant feeding is

optimized so that it follows a production timetable, we propose in our turn to control

the system so that it tracks an admissible reference trajectory planned by the designer.

In other words, the user plans the evolution of the system according to some desired

criteria, then we control the system to satisfy that planned evolution. To do so, we will

propose a simple state feedback control. In contrast to [120], [123], [22], we will keep

the model mass balance as it is, we do not simplify the effect of the alkalinity flow in

the dynamics of the model state variables.

The rest of the chapter is organised as follows. In Section 4.2, we will design a control

strategy to track an admissible reference trajectory. This will be based on full knowledge

of the state vector. Then, in Section 4.3, we will extend the design methodology to

account for the non availability of the full state vector. Thus, we will include one

of the observers designed in Chapter 3 in the control scheme. In order to prove the

stability of the closed loop system, we will provide two synthesis methods to find the

controller and the observer parameters. In Section 4.3.2, we will present the first method

where the observer and the controller gains will be computed separately, using two

quasi independent LMI conditions. While in Section 4.3.3, both of the controller and

the observer gains will be computed simultaneously using unified LMI conditions. In

Section 4.4, we will present the simulation results when applying the control scheme to

the AD model used in the previous chapters. Finally, in Section 4.5, we will conclude

the chapter.

4.2 State-Feedback Trajectory Tracking via LMIs

First, let us recall the AD model presented in Section 2.3 under the following form

ẋ = f(x) + g(x)u (4.1)
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where x = [x1, x2, x3, x4, x5, x6]T , u = [u1, u2]T and

f(x) =



−k1µ1(x1)x2

µ1(x1)x2

k2µ1(x1)x2 − k3µ2(x3)x4

µ2(x3)x4

k4µ1(x1)x2 + k5µ2(x3)x4 − qc(x)

0



, g(x) =



S1in − x1 −x1

−αx2 −αx2

S2in − x3 −x3

−αx4 −αx4

Cin − x5 −x5

Zin − x6 Zad − x6



(4.2)

and the fed concentrations S1in, S2in, Cin, Zin and Zad are assumed to be constant or

piecewise constant. The model output is taken as the following

y1 = [x1, x3, x6]T (4.3)

y2 = qc(x) (4.4)

In order to design a reference tracking control for the AD model (4.1), and with the aim

to present the results in a general way, we rewrite the model (4.1) as

ẋ = N [x x] u+Gγ(x) +Bu (4.5)

with

N = −block-diag (1, α, 1, α, 1, 1) (4.6)

G =


−k1 1 k2 0 k4 0

0 0 −k3 1 k5 0

0 0 0 0 −1 0


T

(4.7)

γ1(x) = µ1(x1)x2, γ2(x) = µ2(x3)x4, γ3(x) = qc(x), and

B =

 S1in 0 S2in 0 Cin Zin

0 0 0 0 0 Zad

T (4.8)



Chapter 4. Control of Biogas Plants 114

To simplify the presentation and to get a convenient structure of the dynamics (4.5), we

proceed as in the observer design presented in Chapter 3 by rewriting the term N [x x] u

as follows:

N [x x] u , A(ρu)x(t) , ρuNx(t) (4.9)

where ρu = u1 + u2.

For practical considerations and from the boundedness of the state variables, the input

control variables are assumed to be bounded. That is, we have

ρmin ≤ ρu ≤ ρmax. (4.10)

Hence, the dynamics (4.5) can be simplified and rewritten as

ẋ = A(ρu)x+Gγ(x) +Bu. (4.11)

Remark 5. The LPV reformulation (4.11) is introduced in the goal to simplify the

tracking problem and avoid the presence of bilinear coupling between the control input

and the state of the system. Hence the reference tracking will be done using only the B

matrix. Indeed, the bilinear part depends on ρu = u1 +u2, which is viewed as a bounded

scalar for practical considerations (generally the input is saturated to avoid washout of

bacteria and emptying the digester). However, the input u related to the B matrix will

be used for tracking.

The control objective consists in tracking a given desired trajectory xd(t) corresponding

to a desired input ud(t), where (xd, ud) is assumed to be an admissible solution to the

system (4.11). That is the pair (xd, ud) satisfies the dynamics:

ẋd = A(ρud)xd +Gγ(xd) +Bud. (4.12)

Hence, the tracking control can be

u = −K(ρud)x̃+ ud (4.13)
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where

x̃ = x− xd (4.14)

represents the tracking error vector, and the control gain is given by

K(ρud) = K0 +
s∑
j=1

ρudj Kj (4.15)

Therefore, the dynamics of the reference tracking error (4.14) can be written as:

˙̃x =

A(ρud)−BK(ρud) +

m,ni∑
i,j=1

ϕij(t)HijHi

 x̃+
(
A(ρu)−A(ρud)

)
xd︸ ︷︷ ︸

ω(t)

(4.16)

where
m,ni∑
i,j=1

ϕij(t)HijHix̃ = G(γ(x)− γ(xd)), Hij = GeTm(i)eni(j) (4.17)

from the DMVT 2 and Lemma 1, and ϕij(t) = ∂γi
∂xj

(νi), with νi ∈ Co(x, xd), and satisfy

ϕ
ij
≤ ϕij ≤ ϕij . (4.18)

The aim consists in finding the controller gain matrices Ki, i = 0, . . . , s, so that the

tracking error x̃ satisfies the following H∞ criterion:

‖x̃‖Ln2 ≤
√
µ‖ω‖2Ln2 + ν‖x̃0‖2 (4.19)

where µ > 0 is the gain from ω to x̃, and ν > 0 is to be determined.

Usually, we use Lyapunov functions to get checkable conditions guaranteeing (4.19). In

the LMI framework, we take a quadratic Lyapunov function V (x̃), such that

ϑ(t) ,
dV

dt
(x̃) + ‖x̃‖2 − µ‖ω‖2 ≤ 0. (4.20)

By analogy to the results of Chapter 3, we obtain the following proposition which pro-

vides sufficient LMI conditions under which the inequality (4.20) holds.

Theorem 12. If there exist symmetric positive definite matrices P,Zij , i, j = 1, . . . , n,

and matrices Yj , j = 0, . . . , s, of appropriate dimension, such that the following convex
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optimization problem holds:

min(µ) subject to (4.22) (4.21)


Θ

Σ︷ ︸︸ ︷[
Σ1 . . . Σm

]

(?) −ΛZ


≤ 0, ∀% ∈ {ρmin, ρmax} (4.22)

with

Θ =

Θ11

P
0


(?) −In

 , Θ11 =

A(P,Y, %) In

(?) −µIn

 (4.23)

A
(
P,Y, %

)
= PAT0 +A0P− Y0B

> −BY>0 +
s∑
j=1

%j

(
PATj +A0P− YjB> −BY>j

)
(4.24)

Σi =
[
N 1
i

(
P,Y,Zi1

)
. . .N ni

i

(
P,Yi,Zini

)]
(4.25)

N j
i

(
P,Y,Zij

)
=


PHT

i

0

0

+


Hij

0

0

Zij (4.26)

Λ = block-diag
(

Λ1, ...,Λm

)
(4.27)

Λi = block-diag

(
2

ϕ̄i1
Ini , . . . ,

2

ϕ̄ini

Ini

)
, (4.28)

Z = block-diag
(
Z1, . . . ,Zm

)
(4.29)

Zi = block-diag
(
Zi1, . . . ,Zini

)
. (4.30)

Then the H∞ criterion (4.19) is satisfied with the tracking controller gains

Kj = Y>j P−1, j = 1, . . . , s.
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The disturbance attenuation level µ is the minimum value returned by (4.21), and ν =

λmax(P).

Proof. The proof is not complicated. We should follow the same steps as in Chapter 3 for

the observer design conjointly with an additional use of a convenient congruence principe.

To avoid repetition, it is not necessary to show here all the steps. The Lyapunov function

candidate is given by

V (x̃) = x̃>P−1x̃.

now, from Chapter 3, we can deduce easily that a sufficient condition ensuring inequality

(4.20) is

AK(ρud) + In P−1

(?) −µIn

+

m,ni∑
i,j=1

ϕij(t)



XT
ij︷ ︸︸ ︷P−1Hij

0

 Yi︷ ︸︸ ︷[
Hi 0

]
+YTi Xij

 ≤ 0 (4.31)

where

AK(ρud) , (A(ρud)−BK(ρud))T P−1 + P−1 (A(ρud)−BK(ρud)) (4.32)

By pre and post multiplying the right hand side of (4.67) by

P 0

0 In

, applying the

Schur Lemma, and using the Young’s inequality in the following manner:

XTijYi + YTi Xij ≤
1

2

[
Yi + ZijXij

]T
Z−1
ij

[
Yi + ZijXij

]
,

we obtain the Theorem 12. This ends the proof.

Remark 6. It is worth to notice that when ϕ
ij
< 0, we have to use ϕ̄

ij
= ϕ̄ij − ϕ

ij

instead of ϕ̄ij and rearrange the matrix Θ to obtain the exact corresponding terms.
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4.3 Observer-Based Reference Trajectory Tracking

4.3.1 Formulation of the problem

In reference trajectory tracking problem (this is the case with most control design prob-

lems), the state of the system, x(t), is generally not available for feedback. That is why

often a state observer is necessary. This section is devoted to this issue. We will provide

two different LMI-based tracking design techniques. The first one gives some separation

results, where the design of the observer and the controller gains are computed sepa-

rately by solving two quasi-independent LMI conditions. The second method consists

in designing the observer-based controller gains simultaneously by solving a single LMI

condition.

As a state observer, we consider the same one as given in Chapter 3. Therefore, the

structure of the observer-based trajectory tracking model is defined as the following:

˙̂x = A(ρu)x̂+

m∑
i=1

Giγi(ϑ̂i) +Bu+ L(ρu)
(
y − Cx̂

)
(4.33a)

u = −K(ρud) (x̂− xd) + ud (4.33b)

ϑ̂i = Hix̂+Ki(ρ)(y − Cx̂), (4.33c)

where

K(ρud) = K0 +
s∑
j=1

ρudj Kj (4.33d)

and

L(ρu) = L0 +

s∑
j=1

ρujLj , Ki(ρu) = Ki0 +

s∑
j=1

ρujKij . (4.33e)

The estimation error is given by

ė(t) =

AL(ρu) +

m,ni∑
i,j=1

φij(t)Hij
(
Hi −Ki(ρu)C

) e(t) (4.34)

where AL(ρu) = A(ρu)−L(ρu)C. Notice that the notations of Chapter 3 are some times

used here without recalling them in order to avoid repetition.
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The dynamics of the reference tracking error (4.16) becomes

˙̃x =

A(ρud)−BK(ρud) +

m,ni∑
i,j=1

ϕij(t)HijHi

 x̃+BK(ρud)e+
(
A(ρu)−A(ρud)

)
xd︸ ︷︷ ︸

ω(t)

(4.35)

In the next two sections, we will provide two different LMI techniques to handle the

problem of trajectory tracking based on state observer.

4.3.2 First LMI technique: Parallel design

This section is devoted to an LMI technique, which ensures the exponential convergence

of the state estimation error to zero and guaranties the H∞ asymptotic stability of the

tracking error. We will present a kind of separation principle for nonlinear systems. Note

that in linear case, the separation principle means that we can investigate separately

the convergence of the estimation error and the stability of the tracking error by using

the concept of eigenvalues. However, in the nonlinear case, the separation results that

we will provide are based on the Lyapunov analysis and on the use of the well-known

Barbalat’s lemma.

Since the dynamics (4.34) do not depend on the reference tracking error x̃(t) and the

functions φij(t) are bounded, then we can study the convergence of the estimation

error e(t) separately and will use it in the dynamics of the tracking error as a bounded

disturbance exponentially converging towards zero. On the other hand, it is useless to

reproduce the convergence analysis of e(t) because it was done in Chapter 3. We will only

recall the sufficient LMI conditions modified in order to have exponential convergence,

instead of asymptotic one.

The following theorem provides the synthesis conditions expressed in term of LMIs.

Theorem 13. The closed-loop system (4.35) is H∞ asymptotically stabilizable by the

observer-based feedback (4.33), if there exist symmetric positive definite matrices P, Q,

Zij, Sij, i, j = 1, . . . , n, and matrices Yi,Xi,Xij of appropriate dimensions such that

for given two positive scalar β, the LMI conditions (4.36) are fulfilled and the convex

optimization problem (4.41) is solvable.
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1. LMIs for the observer gains:


A
(
Q,X, %

)
+ βQ

Π︷ ︸︸ ︷[
Π1 . . . Πm

]

(?) −ΛS

 ≤ 0, ∀% ∈ {ρmin, ρmax} (4.36)

with

A
(
Q,X, %

)
= AT

0 Q + QA0 − CTX0 − XT
0 C +

s∑
j=1

%j

(
AT

j Q + QAj − CTXj − XT
j C
)

(4.37)

and

Πi =
[
M1

i

(
Q,Si1

)
. . . Mni

i

(
Q,Sini

)]
, Mj

i

(
Q,Sij

)
= QHij +HT

i Sij − C>Xij

(4.38)

S = block-diag
(
S1, . . . ,Sm

)
(4.39)

Si = block-diag
(
Si1, . . . ,Sini

)
. (4.40)

The observer gains Lj and Kij are computed as

Lj = Q−1XTj , Kij = S−1
ij X

T
ij .

2. Optimization problem for the controller gains:

min(µ) subject to (4.42) (4.41)


Θ

Σ︷ ︸︸ ︷[
Σ1 . . . Σm

]

(?) −ΛZ


≤ 0, ∀% ∈ {ρmin, ρmax} (4.42)
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with

Θ =

Θ11

P
0


(?) −In

 , Θ11 =

A(P,Y, %) In

(?) −µIn

 (4.43)

A
(
P,Y, %

)
= PAT0 +A0P− Y0B

> −BY>0 +
s∑
j=1

%j

(
PATj +A0P− YjB> −BY>j

)
(4.44)

The matrix blocks Σi and Z are defined in Theorem 12. Thus, the H∞ crite-

rion (4.19) is satisfied with the tracking controller gains

Kj = Y>j P−1, j = 1, . . . , s.

The disturbance attenuation level µ is the minimum value returned by (4.41), and

ν = λmax(P).

Proof. The proof is easy and standard. It is based on the use of the Barbalat’s lemma

since the dynamics of the augmented system with the state

x̃
e

 has a triangular struc-

ture. For more details, we refer the reader to [133]. For the observer convergence we

use the Lyapunov function V1(e) and for the tracking error we use V2(x̃) and the H∞

criterion (4.19), where

V1(e) = e>Qe, V2(x̃) = x̃>P−1x̃ (4.45)

4.3.3 Second approach: Simultaneous design

This section is dedicated to a second observer-based trajectory tracking method. Con-

trarily to the first method, the second one provides a unified LMI synthesis condition

ensuring the convergence of the global augmented system containing the tracking error

vector and the estimation error. For simplicity we assume without loss of generality that

the observer does not contain output feedback in the nonlinear terms, i.e. Ki(ρt) ≡ 0.
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Using the augmented vector ζ ,

x̃
e

, the dynamics of the tracking error and the

estimation error given by (4.35) and (4.34), respectively, can be rewritten under the

following unified form:

ζ̇ =




AK(ρud )︷ ︸︸ ︷
A(ρud)−BK(ρud) BK(ρud)

0 AL(ρu)

+

m,ni∑
i,j=1

ϕij(t)HijHi 0

0 φij(t)HijHi


 ζ

+


In

0

(A(ρu)−A(ρud)
)
xd︸ ︷︷ ︸

ω(t)

(4.46)

The aim consists in finding the gain matrices Lj and Kj so that the augmented error ζ

satisfies the following H∞ criterion:

‖ζ‖L2n2 ≤
√
µ‖ω‖2Ln2 + ν‖ζ0‖2 (4.47)

where µ > 0 is the gain from xd to ζ, and ν > 0 is to be determined.

In order to satisfy (4.47), we use a quadratic Lyapunov function V (ζ), such that

ϑ(t) ,
dV

dt
(ζ) + ‖ζ‖2 − µ‖ω‖2 ≤ 0. (4.48)

By analogy to the previous results, we obtain the following proposition which provides

sufficient LMI conditions under which the inequality (4.48) is satisfied.

Theorem 14. Assume that there exist symmetric positive definite matrices P, Q, Sij,

S̄ij, i, j = 1, . . . , n, and matrices Xi,Yi, i = 0, . . . , s, of appropriate dimensions, such

that for a given positive scalar ε, the following convex optimization problem holds:

min(µ) subject to (4.50) (4.49)
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Θ

Σ︷ ︸︸ ︷[
Σ1 . . . Σm

]

(?) −ΛM


≤ 0, ∀(%, %̄) ∈ Vρ × V%̄ (4.50)

where

Θ =


Θ11


P

0

0



εBY>(%̄)

In

0


(?) −In 0

(?) (?) −2εP


(4.51)

Θ11 =


B
(
P,Y, %̄

)
0 In

(?) A
(
Q,X, %

)
0

In 0 −µIn

 (4.52)

A
(
Q,X, %

)
= AT0 Q + QA0 − CTX0 − XT0 C +

s∑
j=1

%j

(
ATj Q + QAj − CTXj − XTj C

)
(4.53)

B
(
P,Y, %̄

)
= PAT0 +A0P− Y0B

> −BY>0 +
s∑
j=1

%̄j

(
PATj +A0P− YjB> −BY>j

)
(4.54)

Y>(%̄) = Y0 +

s∑
j=1

%̄jYj , (4.55)

Σi =
[
N 1
i

(
Si1, S̄i1

)
. . .N ni

i

(
Sini , S̄ini

)]
(4.56)
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N j
i

(
Sij , S̄ij

)
=





PHT
i

0

0

0

0


+



Hij

0

0

0

0


Sij



0

QHij

0

0

0


+



0

HT
i

0

0

0


S̄ij


(4.57)

Λ = block-diag
(

Λ1, ...,Λm

)
(4.58)

Λi = block-diag
(
Λ1
i , . . . ,Λ

ni
i

)
(4.59)

Λji = block-diag

(
2

bij
I2ni

)
(4.60)

M = block-diag
(
M1, . . . ,Mm

)
(4.61)

Mi = block-diag
(
M1
i , . . . ,M

ni
i

)
(4.62)

Mj
i = block-diag

(
Sij , S̄ij

)
. (4.63)

Then the H∞ criterion (4.47) is satisfied with the observer-based tracking controller

gains

Lj = Q−1XTj , Kj = Y>j P−1, j = 1, . . . , s.

The disturbance attenuation level µ is the minimum value returned by (4.49), and ν =

max
(
λmaxP−1, λmaxQ

)
.

Proof. In order to satisfy the criterion (4.47), we use the following quadratic Lyapunov

function

V (ζ) = ζT

P−1 0

0 Q

 ζ,
where

Q = QT > 0 and P = PT > 0.
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By calculating the derivative of V (ζ) along the trajectories of (4.46), we obtain:

V̇ (ζ) = x̃T

P−1

(
AK(ρud) +

m,ni∑
i,j=1

ϕijHijHi

)
+

(
AK(ρud) +

m,ni∑
i,j=1

ϕijHijHi

)T
P−1

 x̃
+eT

Q(AL(ρu) +
m,ni∑
i,j=1

φijHijHi

)
+

(
AL(ρu) +

m,ni∑
i,j=1

φijHijHi

)T
Q

 e
+2x̃TP−1BK(ρud)e+ 2x̃TP−1ω(t). (4.64)

Hence, ϑ(t) ≤ 0 (equation (4.48)) if the following inequality is fulfilled:


D
(
AK(ρud),AL(ρu)

)
+ I2n

P−1 0

0 Q

In
0



(?) −µIn



+

m,ni∑
i,j=1

ϕij(t)



XT
ij︷ ︸︸ ︷

P−1Hij

0

0


Yi︷ ︸︸ ︷[

Hi 0 0
]

+YTi Xij



+

m,ni∑
i,j=1

φij(t)



X̄T
ij︷ ︸︸ ︷
0

QHij

0


Ȳi︷ ︸︸ ︷[

0 Hi 0
]

+ȲTi X̄ij



+


P−1BK

0

0

[0 In 0
]

+


0

In

0

[(BK)TP−1 0 0
]
≤ 0 (4.65)

where

D
(
AK(ρud),AL(ρu)

)
,

AK(ρud) 0

0 AL(ρu)

T P−1 0

0 Q


+

P−1 0

0 Q

AK(ρud) 0

0 AL(ρu)

 (4.66)
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By pre and post multiplying the right hand side of (4.65) by


P 0 0

0 In 0

0 0 In

 ,

we get the following equivalent inequality:


T(1.1) + PP 0 In

0 T(2.2) + In 0

In 0 −µIn



+

m,ni∑
i,j=1

ϕij(t)



XT
ij︷ ︸︸ ︷
Hij

0

0


Yi︷ ︸︸ ︷[

HiP 0 0
]

+YTi Xij



+

m,ni∑
i,j=1

φij(t)



X̄T
ij︷ ︸︸ ︷
0

QHij

0


Ȳi︷ ︸︸ ︷[

0 Hi 0
]

+ȲTi X̄ij



+

VT︷ ︸︸ ︷
BK

0

0


U︷ ︸︸ ︷[

0 In 0
]

+


0

In

0

[(BK)T 0 0
]
≤ 0 (4.67)

where

T(1.1) = PA>K(ρud) + AK(ρud)P,

T(2.2) = A>L (ρu)Q + QAL(ρu).

Finally, the use of Schur Lemma and the Young’s inequality in the following manner:

XTijYi + YTi Xij ≤
1

2

[
Yi + SijXij

]T
S−1
ij

[
Yi + SijXij

]
,

X̄TijȲi + ȲTi X̄ij ≤
1

2

[
X̄ij + S̄ijȲi

]T
S̄−1
ij

[
X̄ij + S̄ijȲi

]
,
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VTU + UTV ≤ 1

2

[
U + εZV

]T(
εZ
)−1[

U + εZV
]
,

leads to the Theorem 14.

4.4 Simulation Results

In this section, we illustrate by numeric simulation the proposed control strategy to

track a constant reference trajectory planned by the plant operator. We will investigate

both cases, when the full state vector is available for measurement and when only its

partial measurement is available which is the most realistic case.

4.4.1 State-feedback Trajectory traking

In order to simulate the control strategy proposed in Section 4.2, we use the model

parameters given in Table 2.2 and the state bounds provided in Section 2.5. Besides, for

simulation we take S1in = 16 g/l, S2in = 170 mmol/l, Cin = 76.15 mmol/l, Zin = 200

mmol/l, Zad = 700 mmol/l, ρmin = 0.1 day−1, ρmax = 0.8 day−1,

After solving the optimization problem (4.21) given by Theorem 12, by using the LMI

Toolbox of Matlab, we have obtained the following controller gain

K0 =

 0.0007 0.0020 0.0002 0.0722 −0.0000 −0.0001

−0.0008 −0.0021 −0.0008 −0.0209 0.0000 0.0000


K1 = 0 and µ = 0.5.

time (days)
0 5 10 15 20 25 30 35 40 45 50

O
rg
a
n
ic

su
b
st
ra
te

co
n
ce
n
tr
a
ti
o
n
x
1
(g
/
l)

1.6

1.8

2

2.2

2.4

2.6

2.8

3 x1

x1d

x1c

Figure 4.1: Organic substrate concentration x1 (g/l).
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Figure 4.2: Acidogenic bacteria concentration (g/l).
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Figure 4.3: Acetate concentration (mmol/l).
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Figure 4.4: Mathenogenic bacteria concentration (g/l).
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Figure 4.5: Inorganic carbon concentration (mmol/l).
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Figure 4.6: Alkalinity concentration (mmol/l).
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Figure 4.7: Biogas quality (co2%).
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Figure 4.8: Control input u1 (1/day).
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Figure 4.9: Control input u2 (1/day).

In this example, the system is initialized at x(0) = [1.8, 0.4, 12, 0.7, 109.15, 55]T and we

want to track the desired reference given by xd = [1.9572, 0.6058, 5.4, 1.3893, 242.8, 240.3413]T

and ud = [0.4966, 0.0436]T , which corresponds to an enhanced quality of biogas at steady

state, containing only 20.5% of co2 gas. The simulation results are reported in Figures

4.1-4.9. In the first seven former figures, we compare the state trajectories and the bio-

gas quality when applying the control strategy (green dash dotted line, the under-script

‘c’ means controlled) and when not applying the control (blue dashed line). As it can

be noticed from those figures, despite the initial gap between the initialization and the

desired reference, the controlled system is tracking the desired reference and the biogas

quality is enhanced from 30% to 20.5% of countenance of co2 gas. Moreover, the re-

quired control inputs u1 and u2 which are depicted in Figures 4.8-4.9, respectively, show

satisfactory behaviour. Indeed, the dilution rate of the system changes smoothly and

remains in its acceptable domain of variation.
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4.4.2 Observer-Based Reference Trajectory Tracking

Often, in real applications, not all the state variables of the system are measurable,

thus only the partial measurement of the state vector is available. Moreover, in the

AD process, it is known that measurement of the different bacteria concentrations is

difficult, time consuming and costly to process. Therefore, in this section, we will suppose

that only measurements of some substrate concentrations and the co2 gas flow rate are

available as given in equations (4.3), (4.4). Thus, we will investigate the second control

strategy, observer-based reference trajectory tracking 4.3.

In order to show the efficiency of the proposed two design methodologies, parallel and

simultaneous design, for the observer-based control to track the desired reference, we

will run the same numeric simulation as previously (using the same model parameters,

operating and initial conditions as in Section 4.4.1). Then, we will compare the obtained

results.

4.4.2.1 Parallel Design

After solving the LMI conditions (4.36) which have been found to be feasible for β = 0.06,

by using the LMI Toolbox of Matlab, and the optimization problem (4.41) given by

Theorem 13, we have found the following controller gain

K0 =

 0.0007 0.0020 0.0002 0.0722 −0.0000 −0.0001

−0.0008 −0.0021 −0.0008 −0.0209 0.0000 0.0000


K1 = 0, µ = 0.43, and the following observer parameters

L0 =



77.0743 −29.9151 0.0000

−1.9248 0.7410 −0.0000

−36.2480 429.9256 0.0000

−0.7587 −1.4631 −0.0000

−318.3944 −408.7394 −0.0000

−0.0000 −0.0000 0.9954


, L1 =



120.7145 26.3467 0.0000

−3.0766 −0.6662 −0.0000

133.0371 90.6119 −0.0000

−2.0359 −0.7101 −0.0000

−751.4685 −243.3368 0.0000

−0.0000 −0.0000 −0.8690
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K10 =

 0.8492 0.1310 0.0000

−0.7609 0.6798 −0.0000

 , K11 =

 −0.0090 0.0129 −0.0000

0.0140 −0.0240 −0.0000



K20 =

 −0.0283 0.7706 0.0000

−0.1384 −1.1604 −0.0000

 , K21 =

 −0.0008 −0.0060 −0.0000

0.0008 0.0091 −0.0000
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Figure 4.10: Organic substrate concentration x1 (g/l).
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Figure 4.11: Acidogenic bacteria concentration (g/l).

Moreover, to run the simulation we have initialised the system as in the previous section

and the observer by x̂0 = [1.8, 0.6, 12, 0.3, 45, 55]T . We depict the simulation results

in Figures 4.10-4.18. As it can be seen from these figures, although the large initial

estimation error the observer is converging to the simulated state of the system and the

closed loop system tracks the desired reference trajectory. Moreover, the behaviour of

the controller remains smooth and very acceptable.
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Figure 4.12: Acetate concentration (mmol/l).
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Figure 4.13: Mathenogenic bacteria concentration (g/l).
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Figure 4.14: Inorganic carbon concentration (mmol/l).
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Figure 4.15: Alkalinity concentration (mmol/l).
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Figure 4.16: Biogas quality (co2%).
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Figure 4.18: Control input u2 (1/day).

4.4.2.2 Simultaneous Design

In this section, we simulate the simultaneous design approach where we compute the

controller and observer parameters by solving unified LMI conditions. Hence, we solve

the optimization problem (4.49) given by Theorem 14.

Using the LMI Toolbox of Matlab, the same parameter values and operating conditions

as previously (Sections 4.4.1 and 4.4.2.1), we have found the LMI conditions (4.50) fea-

sible for ε = 10. Hence, we have obtained the following observer and control parameters

L0 =



1941 −7101.3 16.193

−46.037 169.51 −0.42981

−7212.1 77611 −194.51

6.8699 −216.27 0.5592

29.072 −65770 172.44

0.015661 −0.076595 1.1282


, L1 =



−4522.5 −1174.2 −10.376

108.25 27.94 0.2354

81081 12913 64.577

−255.86 −36.065 −0.13418

−82473 −10981 −33.41

−0.17246 −0.045071 −1.0134



K0 =

 0.0019 0.0061 0.0007 0.1989 0.0000 −0.0004

−0.0005 −0.0017 −0.0002 −0.0571 −0.0000 0.0004


K1 = 0 and µ = 0.48. After processing the simulation, we have obtained the results

depicted in Figures 4.19-4.27, where we can see clearly that, although the large initial

estimation error and the gap between the initial state of the simulated system and

the desired reference, the controlled system is responding to the designed control and
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tracking the desired reference. Indeed, the observer is converging to the states of the

simulated system and the later is tracking the reference. Moreover, the control is smooth

and ranging in an acceptable interval of variation. Nevertheless, if we compare the

results obtained by the parallel and simultaneous design approaches, we will notice that

for the same initialisation and desired reference, more control efforts are required by

the simultaneous design, whatever for u1 or u2 as it can be seen in Figure 4.28. This

fact may me due to the larger values of both observer and controller gains ensuring the

feasibility of the LMI conditions (4.50).
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Figure 4.19: Organic substrate concentration x1 (g/l).
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Figure 4.20: Acidogenic bacteria concentration (g/l).
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Figure 4.21: Acetate concentration (mmol/l).
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Figure 4.22: Mathenogenic bacteria concentration (g/l).
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Figure 4.23: Inorganic carbon concentration (mmol/l).
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Figure 4.24: Alkalinity concentration (mmol/l).
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Figure 4.26: Control input u1 (1/day).
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Figure 4.27: Control input u2 (1/day).
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Figure 4.28: Control input u1 (1/day) (par: parallel, sim: simultaneous).
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Figure 4.29: Control input u2 (1/day) (par: parallel, sim: simultaneous).
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Figure 4.30: Organic substrate concentration x1 (g/l) (parc: parallel control, simc:
simultaneous control).
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Figure 4.31: Acetate concentration (mmol/l) (parc: parallel control, simc: simulta-
neous control).
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Moreover, the impact of the higher control amplitude obtained by the simultaneous

design approach at the transient time is reflected of the transient response of the state

variables. For example, we compare the time response of the states x1 and x3 obtained

by the two approaches (xiparc and xisimc correspond to the controlled state xi obtained

by parallel and simultaneous design approach, respectively) in Figures 4.30 and 4.31,

respectively. As it can be seen, the transient response of the two state variables is more

aggressive when using the simultaneous design.

Finally, we conclude that both design methodologies for the observer-based feedback

control allow to find appropriate observer and controller parameters which enable the

system to track the desired reference. According to the simulation results, the control

amplitude remains in a suitable interval of variation. However, more investigations are

required to deal with the saturation of the control inputs and stability of the closed

system under such saturation.

4.5 Conclusion

In this chapter, we have proposed a state feedback control to track a reference trajectory.

In order to prove the stability of the closed loop system, we have provided non restrictive

LMI conditions easily tractable by convex optimization algorithm. Moreover, due to the

lack of monitoring that experience the AD applications, we have considered the state

estimation through the inclusion of an exponential observer in the control design. In

the sequel, we have provided two methodologies to find the observer and controller

parameters which ensure the stability of the closed loop system (system composed from

the system, controller and the observer).

We point out that the design has been done for a full state feedback control. However,

it can be easily applied for partial feedback control or linear combination of the state

variables by taking, for example, the tracking error x̃ = T (x − xd), where T is a linear

matrix of appropriate dimension. All the findings remain applicable provided to adapt

the equation dimensions. Moreover, it is not difficult to investigate the case of disturbed

dynamics and measurements of the system. However, further research is required to

account for saturation constraints in the control inputs.



Chapter 5

General Conclusion

5.1 Summary

In this thesis, we have proposed a formal modelling framework for the AD process,

which promotes the integration of biogas plants in the power grid. Actually, we have

added to the AM2 model [4] two control inputs reflecting the addition of stimulating

substrates. These additional control inputs add more degrees of freedom in the control

of biogas production [165]. Then, we have proved the positiveness and boundedness of

the model state variables. Due to this proof, we could design different types of nonlinear

state observers. The design of the state observers has been presented in a general

way, in order to make them usable for other applications. First, we have designed an

invariant like nonlinear state observer, which was applied successfully to the proposed

AD model [166]. However, due to its local properties we have proposed a more global

nonlinear state observer of the same form as the Arcak’s observer [157]. Moreover, to

account for the disturbances affecting the model dynamics and the measurements, we

have included the H∞ criterion in the observer design. Because the software sensors, in

real applications, are usually driven by sampled data, we have also extended the observer

design to the discrete time case. Additionally, we have generalized the designed nonlinear

state observers to the most encountered case in real plants: the case of nonlinear outputs.

The used technique to design of the different observers is based on the use of the DMVT

which allows to transform the nonlinear dynamics of the estimation error to an LPV

system. Then using the LPV techniques we have formulated the stability conditions in

141
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the form of tractable LMI conditions. In order to relax the feasibility of the synthesised

LMI conditions, we have included additional decision variables in their design through

the use of a suitable reformulation of the Young’s inequality.

Furthermore, we have proposed a framework where in alliance with the power grid

demand, the biogas plant operator can plan in timely manners for a desired evolution of

the biogas production. This desired evolution is regarded as a reference trajectory for

the system. Thus, we have proposed a control scheme to track that reference trajectory.

To account for the non availability of the full state vector to perform the tracking control,

we have combined its design with an exponential nonlinear observer. Thus, to ensure

the closed loop stability we have proposed two design methodologies. In the first, the

observer and the controller gains are computed separately. This method relies on the use

of the Barbalat’s lemma [133], [134]. While in the second method, both the observer and

the controller parameters are computed simultaneously using unified LMI conditions.

5.2 Outlook

In future, it would be interesting to identify the modelling framework parameters using

appropriate data collected from a real process.

Moreover, throughout Chapter 3 and Chapter 4, the input concentrations of the fed

waste S1in, S2in, Cin and Zin were assumed to be known and constant. It is worthwhile

to extend the results for unknown or uncertain input concentrations [167], [168].

Besides, further research is required to include the saturation constraints of the manipu-

lated variables in the control design and stability analysis. Likewise, more investigations

are needed to determine the reference trajectories which allow to satisfy the power grid

request. Finally, before applying the theoretical results to a real plant, it would be very

interesting to analyse the finite time stability of the controlled system [169].



Appendix A

Equations of the ADM1 Model

When the system is modelled by Differential Algebraic Equations (DAE system), the

resulted state space model contains 26 state variables (concentrations). It involves 19

biochemical rate processes, three gas-liquid transfer processes and additional six acid-

base kinetic processes. In order to characterise the acid-base dissociation in aquatic

systems, each of Volatile Fatty Acids (VFAs), inorganic carbon (IC) and inorganic ni-

trogen (IN) states are split into two components. Dynamics of the biodegradable organic

matter included in the ADM1 are summarized in the subsequent sections. The complete

Petersen matrix describing the liquid phase reactions is depicted in Figures A.1 and A.2,

and for more details we refer the reader to [2], [3] and [37].
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A.1 Liquid Phase Equations

A.1.1 Soluble Matter

dSv
dt

=
qin
V

(Ssu,in − Ssu) + ρ2 + (1− ffa,liρ4)− ρ5 (A.1)

dSa
dt

=
qin
V

(Saa,in − Saa) + ρ3 − ρ6 (A.2)

dSfa
dt

=
qin
V

(Sfa,in − Sfa) + ffa,liρ4 − ρ7 (A.3)

dSva
dt

=
qin
V

(Sva,in − Sva) + (1− Yaa)fva,aaρ6 − ρ8 (A.4)

dSbu
dt

=
qin
V

(Sbu,in − Sbu) + (1− Yaa)fbu,suρ5 + (1− Yaa)fva,aaρ6 − ρ9 (A.5)

dSpro
dt

=
qin
V

(Spro,in − Spro) + (1− Ysu)fpro,suρ5 + (1− Yaa)fproρ6 (A.6)

+(1− Yc4)0.54ρ8 − ρ10

dSac
dt

=
qin
V

(Sac,in − Sac) + (1− Ysu)fac,suρ5 + (1− Yaa)fac,aaρ6 (A.7)

+(1− Yfa)0.7ρ7 + (1− Yc4)0.31ρ8ρ9 + (1− Yaa)0.57ρ10 − ρ11

dSh2
dt

=
qin
V

(Sh2,in − Sh2) + (1− Ysu)fh2,suρ5 + (1− Yaa)fh2,aaρ6 − ρT,h2 (A.8)

+(1− Yfa)0.3ρ7 + (1− Yc4)0.2ρ9 + (1− Ypro)0.43ρ10 − ρ12

dSch4
dt

=
qin
V

(Sch4,in − Sch4) + (1− Yac)ρ11 + (1− Yh2)ρ12 − ρT,ch4 (A.9)

dSIC
dt

=
qin
V

(SIC,in − SIC) +

19∑
j=1

 ∑
i=1−9,11−14

Ciνi,jρj

− ρT,co2 (A.10)

dSIN
dt

=
qin
V

(SIN,in − SIN )− YsuNbacρ5 + (Naa − YaaNbac)ρ6 − YfaNbacρ7(A.11)

−Yc4Nbacρ8 − Yc4Nbacρ9 − YproNbacρ10 − YacNbacρ11 − Yh2Nbacρ12

+(Nbac −Nxc)
19∑
i=13

ρi + (Nxc − fxi,xcNI − fsi,xcNI − fpr,xcNaa)ρ1

dSI
dt

=
qin
V

(SI,in − SI) + fSI,xcρ1 (A.12)

where

19∑
j=1

 ∑
i=1−9,11−14

Ciνi,jρj

 =

12∑
k=1

skρk + s13 (ρ13 + ρ14 + ρ15 + ρ16 + ρ17 + ρ18 + ρ19)

(A.13)
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with

s1 = −Cxc + fsi,xcCsi + fch,xcCch + fpr,xcCpr + fli,xcCli + fxi,xcCxi (A.14)

s2 = −Cch + Csu (A.15)

s3 = −Cpr + Caa (A.16)

s4 = −Cli + 1− ffa,liCsu + ffa,liCfa (A.17)

s5 = −Csu + (1− Ysu) (fbu,suCbu + fpro,suCpro + fac,suCac) + YsuCbac (A.18)

s6 = −Caa + (1− Yaa) (fva,aaCva + fbu,aaCbu + fpro,aaCpro + fac,aaCac)(A.19)

+YaaCbac

s7 = −Cfa + (1− Yfa) 0.7Cac + YfaCbac (A.20)

s8 = −Cva + (1− Yc4) 0.54Cpro + (1− Yc4) 0.31Cac + Yc4Cbac (A.21)

s9 = −Cbu (1− Yc4) 0.8Cac + Yc4Cbac (A.22)

S10 = −Cpro + (1− Ypro) 0.57Cac + YproCbac (A.23)

s11 = −Cac + (1− Yac)Cch4 + YacCbac (A.24)

s12 = (1− Yh2)Cch4 + YacCbac (A.25)

s13 = −Cbac + Cxc (A.26)
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A.1.2 Particulate Matter

dXc

dt
=

qin
V

(Xc,in −Xc)− ρ1 +
19∑
i=13

ρi (A.27)

dXch

dt
=

qin
V

(Xch,in −Xch) + fch, xcρ1 − ρ2 (A.28)

dXpr

dt
=

qin
V

(Xpr,in −Xpr) + fpr, xcρ1 − ρ3 (A.29)

dXli

dt
=

qin
V

(Xli,in −Xli) + fli, xcρ1 − ρ4 (A.30)

dXsu

dt
=

qin
V

(Xsu,in −Xsu) + Ysuρ5 − ρ13 (A.31)

dXaa

dt
=

qin
V

(Xaa,in −Xaa) + Yaaρ6 − ρ14 (A.32)

dXfa

dt
=

qin
V

(Xfa,in −Xfa) + Yfaρ7 − ρ15 (A.33)

dXpro

dt
=

qin
V

(Xpro,in −Xpro) + Yproρ10 + Ychρ8 + Yc4ρ8 − ρ16 (A.34)

dXa

dt
=

qin
V

(Xa,in −Xa) + Yacρ11 − ρ18 (A.35)

dXh2

dt
=

qin
V

(Xh2,in −Xh2) + Yacρ11 − ρ19 (A.36)

dXI

dt
=

qin
V

(XI,in −XI) + fxI,xcρ1 (A.37)

A.2 Process Rates

A.2.1 Hydrolysis Rates

ρ1 = kdis.Xc (A.38)

ρ2 = khyd,ch.Xch (A.39)

ρ3 = khyd,pr.Xpr (A.40)

ρ4 = khyd,li.Xli (A.41)
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A.2.2 Uptake Rates

ρ5 = km,su.
Ssu

KS,su + Ssu
.Xsu.I5 (A.42)

ρ6 = km,aa.
Saa

KS,aa + Saa
.Xaa.I6 (A.43)

ρ7 = km,fa.
Sfa

KS,fa + Sfa
.Xfa.I7 (A.44)

ρ8 = km,c4 .
Sva

KS,c4 + Sva
.Xc4 .

1

1 + Sbu
Sva

.I8 (A.45)

ρ9 = km,c4 .
Sbu

KS,c4 + Sbu
.Xc4 .

1

1 + Sva
Sbu

.I9 (A.46)

ρ10 = km,pr.
Spro

KS,pro + Spro
.Xpro.I10 (A.47)

ρ11 = km,ac.
Sac

KS,ac + Sac
.Xac.I11 (A.48)

ρ12 = km,h2 .
Sh2

KS,h2 + Sh2
.Xh2 .I12 (A.49)

A.2.3 Decay Rates

ρ13 = kdec,Xsu .Xsu (A.50)

ρ14 = kdec,Xaa .Xaa (A.51)

ρ15 = kdec,Xfa
.Xfa (A.52)

ρ16 = kdec,Xc4
.Xc4 (A.53)

ρ17 = kdec,Xpr .Xpr (A.54)

ρ18 = kdec,Xac .Xac (A.55)

ρ19 = kdec,Xh2
.Xh2 (A.56)
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A.2.4 Process Inhibitions

I5,6 = IpH,aa.IIN,lim (A.57)

I7 = IpH,fa.IIN,lim.Ih2,fa (A.58)

I8,9 = IpH,aa.IIN,lim.Ih2,c4 (A.59)

I10 = IpH,aa.IIN,lim.Ih2,pro (A.60)

I11 = IpH,ac.IIN,lim.INH3 (A.61)

I12 = IpH,h2 .IIN,lim (A.62)

IpH,aa =


exp

(
−3
(

pH−pHUL,aa

pHUL,aa−pHLL,aa

)2
)

pH < pHUL,aa

1 pH > pHUL,aa

(A.63)

IpH,ac =


exp

(
−3
(

pH−pHUL,ac

pHUL,ac−pHLL,ac

)2
)

pH < pHUL,ac

1 pH > pHUL,ac

(A.64)

IpH,h2 =


exp

(
−3
(

pH−pHUL,h2
pHUL,h2

−pHLL,h2

)2
)

pH < pHUL,h2

1 pH > pHUL,h2

(A.65)

IIN,lim =
1

1 +
Ks,IN

SIN

(A.66)

Ih2,fa =
1

1 +
Sh2

KI,h2,fa

(A.67)

Ih2,c8 =
1

1 +
Sh2

KI,h2,c4

(A.68)

Ih2,pro =
1

1 +
Sh2

KI,h2,pro

(A.69)

INH3 =
1

1 +
SNH3
KI,NH3

(A.70)
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A.3 Acid-base Dissociation

In order to characterize the acid-base dissociation in aquatic systems, the VFAs, inor-

ganic carbon (IC) and inorganic nitrogen (IN) are split into two components, free and

ionic forms:

SCat+ + SNH+
4

+ SH+ − SHCO−
3
− Sac−

64
−
Spro−

112
− Sbu−

160
− Sva−

208
− SOH− − SAn− = 0

(A.71)

with

SOH− − Kw

SH+

= 0 (A.72)

Sva− −
Ka,va.Sva,total
Ka,va + SH+

= 0 (A.73)

Sbu− −
Ka,bu.Sva,total
Ka,bu + SH+

= 0 (A.74)

Spro− −
Ka,bu.Spro,total
Ka,bu + SH+

= 0 (A.75)

SHCO−
3
− Ka,co2 .SIC
Ka,co2 + SH+

= 0 (A.76)

SIN − SNH3 − SNH+
4

= 0 (A.77)

SIC − Sco2 − SHCO−
3

= 0 (A.78)

A.4 Liquid/ gas Transfer

ρT,h2 = kLa(Sliq,h2 − 16Kh,h2Pgas,h2) (A.79)

ρT,ch4 = kLa(Sliq,ch4 − 64Kh,ch4Pgas,ch4) (A.80)

ρT,IC = kLa(Sliq,co2 −Kh,co2Pgas,co2) (A.81)

To pass from concentrations to pressures, the ideal gas low is used P = SRT where S

is the concentration in KgCODm−3.
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Gas phase equations are similar to the liquid phase equations except that there is no

additive influent flow

dSgas,i
dt

=
−Sgas,iqgas

Vgas
+ ρT,i

Vliq
Vgas

(A.82)

Pgas,h2 = Sgas,h2
RT

16
(A.83)

Pgas,ch4 = Sgas,ch4
RT

64
(A.84)

Pgas,co2 = Sgas,co2RT (A.85)

The reactor head space is assumed to be water vapour saturated, the Pgas,H2O is given

by the following equation:

Pgas,H2O = 0, 013exp

(
5290

(
1

298
− 1

T

))
(A.86)

and if the total pressure is constant Pgas = 1, 013 bar, so

qgas =
RT

Pgas − Pgas,H2O

Vliq

(ρT,h2
16

+
ρT,ch4

64
+ ρT,co2

)
(A.87)

else

Pgas = Pgas,h2 + Pgas,ch4 + Pgas,co2 + Pgas,H2O (A.88)

and

qgas = Kp(Pgas − Patm) (A.89)

where Kp is the pipe resistance (m3d−1bar) and Patm is the external atmospheric pres-

sure.

A.5 Gas Phase Equations

dSgas,h2
dt

=
−Sgas,h2qgas

Vgas
+ ρT,h2

Vliq
Vgas

(A.90)

dSgas,ch4
dt

=
−Sgas,ch4qgas

Vgas
+ ρT,ch4

Vliq
Vgas

(A.91)

dSgas,co2
dt

=
−Sgas,co2qgas

Vgas
+ ρT,co2

Vliq
Vgas

(A.92)
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Figure A.1: Biochemical rate coefficients (νi,j) and kinetic rate equations (ρj) for
soluble components (i = 1–12, j = 1–19) [3].
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Figure A.2: Biochemical rate coefficients (νi,j) and kinetic rate equations (ρj) for
soluble components (i = 13–24, j = 1–19) [3].



Appendix B

Interface between the ADM1 and

the Reduced Model

Interface between the ADM1 variables and the reduced model AM2 as given in [145]:

x1 = Ssu + Saa + Sfa +Xc +Xch +Xpr +Xli

x2 = (Xsu +Xaa +Xfa)/1.55

x3 =
(
Sva
208 + Sbu

160 +
Spro

112 + Sac
64

)
.1000

x4 = (Xac +Xh2 +Xc4 +Xpro)/1.55

x5 = Sic.1000

x6 =
(
Sva
208 + Sbu

160 +
Spro

112 + Sac
64 + shco3

)
.1000

co2 = Sco2.1000

bic = Shco3.1000

qc = ρT,10.1000

qm = ρT,9.1000

PC =
Pgaz,co2

Pgaz,co2+Pgaz,ch4

(B.1)

with the corresponding units, x1 (kgDCO/m3), x2 (kgSV/m3), x3 (mM), x4 (kgSV/m3),

x5 (mM), x6 (mM), co2 (mM), bic (mM), qc (mM/day), qm (mM/day) and PC (atm).
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Mathematical Complement

Definition 5. In linear algebra, a symmetric real matrix S ∈ Rn×n is said to be

1. positive-definite S > 0 iff xTSx > 0, ∀ x ∈ Rn, x 6= 0.

2. positive semi-definite S ≥ 0 iff xTSx ≥ 0, ∀ x ∈ Rn, x 6= 0.

3. negative-definite S < 0 iff xTSx < 0, ∀ x ∈ Rn, x 6= 0.

4. negative semi-definite S ≥ 0 iff xTSx ≤ 0, ∀ x ∈ Rn, x 6= 0.

Definition 6. (Schur complement [158]) The Schur complement of an invertible matrix

A, of the matrix M

M :=

A B

C D


is the matrix D − CA−1B.

Definition 7. (Schur lemma [158]) Suppose A and C are symmetric matrices (A = AT

and C = CT ), then  A B

BT C

 > 0

if and only if

C −BTA−1B > 0 if A > 0

or equivalently, if and only if

A−BC−1BT > 0 if C > 0.
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Definition 8. (Convex set) A set E is said to be convex if

λx1 + (1− λ)x2 ∈ E

∀ (x1, x2) ∈ E, ∀ λ ∈ [0, 1].

Geometrically this means that, a convex set is a region such that, for every pair of points

within the region, every point on the straight line segment that joins the pair of points

is also within the region.

Definition 9. (Convex function) A function ϕ : Rn → R is said to be convex if

ϕ
(
λx1 + (1− λ)x2

)
≤ λϕ(x1) + (1− λ)ϕ(x2)

∀ (x1, x2) ∈ Rn2
, ∀ λ ∈ [0, 1].

A function ϕ is strictly convex if

ϕ
(
λx1 + (1− λ)x2

)
< λϕ(x1) + (1− λ)ϕ(x2)

∀ x1 6= x2, ∀ λ ∈]0, 1[.



Appendix D

Stability of dynamical

systems : Lyapunov Stability

Stability theory of a dynamical system studies the trajectory of that system around an

equilibrium point. That is, analysing how the state trajectory will progress when the

initial state ( the system state at initial conditions) is located in the neighbourhood of

one of the system equilibrium points.

Stability in the sense of Lyapunov is a general theory dedicated to the study of dy-

namical systems described by a differential equation. A system is stable according to

the Lyapunov stability theory if the solution of the differential equation describing the

system under consideration, with an initial state located around one of its equilibrium

point, will remain in a closed ball around the equilibrium point.

D.1 Continous-time systems stability

Consider the class of nonlinear systems described by the following differential equation:

ẋ(t) = f(x(t), t), x(t0) = x0 (D.1)

where x(t) ∈ Rn is the state vector, f(x(t), t) : Rn × R+ → Rn is continue vector

function, and xe is the equilibrium point of (D.1) such that f(xe, t) = 0. ∀ t ≥ t0, x(t0)

and t0 are the initial state and initial time, respectively. We denote by x(t, t0, x0) the
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solution of system (D.1) at t ≥ t0.

Throughout this thesis, only the stability of the estimation error is studied. For this

reason, we assume that the nonlinear system (D.1) possesses a unique equilibrium point

xe = 0. This assumption leads to represent some definitions of the stability of system

the (D.1) at the origin.

Definition 10. (Stability) The equilibrium point xe = 0 (origin) of the system (D.1)

is said to be stable, in the sense of Lyapunov, if for each ε > 0, there is a positive scalar

δ(ε, t0) such that

‖x(t0)‖ < δ(ε, t0) ⇒ ‖x(t, t0, x0)‖ < ε, ∀ t ≥ t0 ≥ 0

The system (D.1) is said to be unstable if it is not stable.

Definition 11. (uniform stability) The equilibrium point xe = 0 of system (D.1)

is said to be uniformly stable, in the sense of Lyapunov, if for each ε > 0, there is a

positive scalar δ(ε) such that:

‖x(t0)‖ < δ(ε) ⇒ ‖x(t, t0, x0)‖ < ε, ∀ t ≥ t0 ≥ 0

Definition 12. (asymptotic stability) The equilibrium point xe = 0 of system (D.1)

is said to be asymptotically stable, if it is stable and there exists a positive scalar δ(t0)

such that

‖x(t0)‖ < δ(t0) ⇒ lim
t→∞
‖x(t, t0, x0)‖ = 0, ∀ t ≥ t0 ≥ 0

Definition 13. (Attractivity) The equilibrium point xe = 0 of system (D.1) is an

attractive point of (D.1), if for each ε > 0, there is a positive scalar δ(t0) such that :

‖x0‖ < δ(t0) ⇒ lim
t→∞

(x(t, t0, x0)) = 0, ∀ t ≥ t0.

if δ(t0) = +∞, the origin is said to be globally attractive.

Definition 14. (exponential stability) The equilibrium point xe = 0 of system (D.1)

is said to be exponentially stable, if there exist positive scalars α and β such that :

‖x(t, t0, x0)‖ ≤ α exp(−β(t− t0)), ∀ t ≥ t0, ∀ x0 ∈ Br.
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If Br = Rn, the system is said to be globally exponentially stable.

D.2 Discrete-time systems stability

Consider the discrete-time system described by the following difference equation

x(k + 1) = f(x(k), k), x(k0) = x0 (D.2)

where x(k) ∈ Rn is the state vector, f(x(k), k) : Rn ×R+ → Rn is a continuous vector

function, x(k0) and k0 are the initial state vector and the initial time, respectively. We

denote by x(k, k0, x0) the solution of the difference equation (D.2) at k ≥ k0.

The stability definitions for continuous-time systems (D.1) remain valid for discrete-time

systems (D.2), except the exponential stability which changes.

Definition 15. (Exponential Stability) The equilibrium point xe = 0 of system

(D.1) is said to be globally exponentially stable, if there exists two positive scalars α

and 0 < ρ < 1 such that :

‖x(k, k0, x0)‖ ≤ α‖x0‖ρ(k−k0), ∀ k ≥ k0 ≥ 0, ∀ x0 ∈ Br.

If Br = Rn, the system is said to be globally exponential stable.

The use of the previous definitions to check the stability of a system of the form (D.1)

(resp. D.2) requires an explicit solution. In most cases, it is not easy to compute the

explicit solution of a nonlinear system or even impossible, which makes these definitions

difficult to apply. The Lyapunov direct method is an efficient alternative to overcome this

difficulty, such that the existence of the so-called Lyapunov function and the negativity

of its derivative with respect to time, ensure the local or the the global stability of the

system under consideration.

D.3 Lyapunov direct method

Lyapunov direct method allows to determine the stability of a dynamical system without

resorting to calculate the solution of (D.1) (resp. D.2). The method is a generalization
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of the fact that a physical system whose energy is not increasing is somewhat stable. In

other words, the Lyapunov direct method studies the rate of energy change of a system,

which provides a clear idea on its stability.

Definition 16. Let V (x, t) : Rn ×R+ → R+ to be scalar continuous function. V (x, t)

is said to be proper positive definite if

1. ∀ t ∈ R+,∀ x ∈ Rn, x 6= 0 V (x, t) > 0;

2. ∀ t ∈ R+, V (x, t) = 0 ⇒ x = 0;

3. ∀ t ∈ R+, lim‖x‖→∞ V (x, t) =∞.

Definition 17. (Lyapunov function) A function V (x, t) of class C1 is a local Lya-

punov function (resp. global) for system (D.1), if it is proper positive definite and if

there exists a subset V0 ⊂ Rn containing the origin, such that ∀ x ∈ V0 (resp. x ∈ Rn) :

V̇ (x, t) =
∂V (x, t)

∂t
+
∂V (x, t)

∂x
f(x(t), t) ≤ 0.

If V̇ (x, t) < 0, then V (x, t) is called a strict Lyapunov function for system (D.1).

Definition 18. (Lyapunov direct method) If system (D.1) admits a Lyapunov func-

tion (resp. strict Lyapunov function), then the origin is a locally stable equilibrium

point (resp. asymptotically stable).

This result can be generalized for global Lyapunov function. ∀ x ∈ Rn.

Definition 19. (Exponential Stability) The origin of system (D.1) is locally ex-

ponentially stable, if there exists scalars α, β, γ > 0, p ≥ 0 and a Lyapunov function

V (x, t) : V0 × R+ → R+ of class C1, such that ∀ x ∈ V0 :

1. α‖x‖p ≤ V (x, t) ≤ β‖x‖p;

2. V̇ (x, t) < −γV (x, t).

If V0 = Rn, then the origin of (D.1) is globally exponentially stable.

Remark 7. By choosing a quadratic Lyapunov function V (x(t), t) = xT (t)Px(t), P =

P T > 0, then the origin of the linear system ẋ(t) = Ax(t) is globally exponentially stable

if P is a solution for the matrix equation ATP + PA = −Q, for any positive definite

matrix Q.
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The Lyapunov’s direct method can be applied for both continuous-time and discrete-time

systems. The exponential stability of a discrete-time system is expressed as follows:

Definition 20. (Exponential Stability) The origin of system (D.2) is locally expo-

nentially stable, if there exists a proper definite positive Lyapunov function V (xk, k) : Br×

R+ → R+, V (0, k) = 0, an scalars α, β et 0 < γ < 1 such that, ∀ x0 ∈ Br et ∀ k ≥ k0 ≥ 0 :

1. α‖xk‖2 ≤ V (x, t) ≤ β‖xk‖2;

2. The Lyapunov sequence {V (xk, k)}k=k0,... is strictly decreasing, i.e :

∆V (xk, k) = V (xk+1, k + 1)− V (xk, k) ≤ −γV (xk, k)

where

xk+1 = x(k + 1, k0, x0) = f(x(k + 1), k + 1).

Remark 8. By choosing the Lyapunov quadratic function V (xk, k) = xTk Pxk, P = P T >

0, The origin of the discrete-time linear system xk+1 = Axk is globally asymptotically

stable, if and only if P is a solution for the matrix equation ATPA− P = −Q, for any

positive definite matrix Q.
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Université de Nice - Sophia Antipolis, 2008.

[23] B. Benyahia. Modélisation et Observation des Bioprocédés à Membranes: Appli-
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[144] N. Noykova, T.G MuÈller, M. Gyllenberg, and J. Timmer. Quantitative anal-

yses of anaerobic wastewater treatment processes: Identifiability and parameter

estimation. Biotechnology and Bioengineering, 78:89–103, 2002.

[145] S. Hassam. Modélisation de la Qualité du Biogas Produit par un Fermenteur
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Abstract
In this thesis, we propose a formal modelling framework for the anaerobic digestion pro-

cess, where we add more degrees of freedom in the control of biogas production. Indeed,

we add two additional control inputs to the standardized AM2 (Acidogenesis Methano-

genesis, 2 steps) model, reflecting addition of stimulating substrates which enhance the

biogas quality and quantity. Then, we describe how the parameters of the resulted

nonlinear model can be identified, and we analyse the positiveness and boundedness of

its state variables. Based on the derived mathematical model and the analysis results,

we design different software sensors to overcome the lack of reliable and cheap sensors.

Indeed, we present a general class of systems to which the considered process model

belongs. Then, we design an LMI-based invariant like observer as well as an LMI-based

nonlinear observer of the same form as the generalized Arcak’s observer. Furthermore,

with the aim to render the observer design more robust to disturbances, we include the

H∞ criterion in its synthesis. Also, to promote the use of the proposed observers in real

applications, we extend the methodology to the discrete time case and to the case of

nonlinear systems with nonlinear outputs. For the different observers design, we use the

differential mean value theorem which allows the transformation of the nonlinear estima-

tion error to a linear parameter varying system. Then, we use the Lipschitz conditions

and the Lyapunov standard function to synthesize the stability conditions in the form

of linear matrix inequalities. Finally, we enhance the feasibility of the later conditions

by using a judicious reformulation of the Young’s inequality.

In the thesis, we also deal with the process control where we propose a control strategy

to track an admissible reference trajectory planned by the plant operator. Moreover, to

account for the partial availability of the state vector measurements, we include an ex-

ponential nonlinear observer in the control synthesis. Thus, we design an observer based

tracking control scheme. To perform the stability analysis of the closed loop system,

composed of the system, the observer and the controller, we use the Barbalat’s lemma

conjointly with the techniques already mentioned for the observers design. Finally, we

propose two different methods to compute the controller and the observer parameters.

In the first one, we propose to compute them separately. While, in the second one we

compute the parameters simultaneously.

Keywords: Nonlinear systems, anaerobic digestion, nonlinear observer, H∞ criterion,

nonlinear control.
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Résumé

La digestion anaérobie est un procédé permettant de transformer les déchets organiques

en énergie utile, telle que le biogaz. Ce procédé fait intervenir des organismes vivants

dont le comportement spécifique est fortement non linéaire. Par ailleurs, il est connu

pour être sensible aux perturbations et naturellement instable. Ainsi, le développement

de méthodologies efficaces pour sa commande et sa supervision est essentiel afin d’obtenir

des résultats satisfaisants. Par conséquent, l’objet de cette thèse porte sur la modélisation

de ce système complexe, la synthèse d’observateurs et de lois de commande afin d’améliorer

le fonctionnement du procédé dans les stations de biogaz.

Une modélisation formelle du procédé est alors proposée où des degrés de liberté addi-

tionnels ont été introduits dans la commande de production de biogaz. En effet, deux

entrées de commande supplémentaires viennent compléter le modèle standard AM2 (Aci-

dogenèse Methanogenesis, 2 étapes), reflétant l’ajout de substrats stimulants (acides et

alcalinité) qui améliorent la qualité et la quantité du biogaz. Par la suite, l’identification

des paramètres du modèle non linéaire résultant est traitée, ainsi que l’analyse de la

positivité et la bornitude des variables d’état. Sur la base du modèle mathématique

dérivé et des résultats de l’analyse, différents observateurs sont alors étudiés afin de

surmonter le manque de capteurs fiables, autonomes et bons marché. En effet, deux

observateurs sont alors développés, le premier dit invariant et le second non linéaire de

la même forme que l’observateur généralisé d’Arcak. En outre, dans le but de rendre

la conception d’observateurs plus robuste aux perturbations, le critère H∞ est introduit

dans la synthèse. Une extension de la méthodologie est proposée pour les systèmes

discrets ainsi qu’aux systèmes non linéaires avec sorties non linéaires.

Pour la synthèse des différents observateurs, le théorème des accroissements finis est ap-

pliqué, ce qui permet de transformer la dynamique non linéaire de l’erreur d’estimation

en un système linéaire à paramètres variants. La condition de Lipschitz est alors conjoin-

tement utilisée avec la fonction classique de Lyapunov pour la synthèse des conditions

de stabilité sous forme d’Inégalités Matricielles Linéaires (LMIs). Enfin, afin d’améliorer

la faisabilité de ces dernières conditions, une reformulation judicieuse de l’inégalité de

Young est alors introduite.

Concernant la commande du procédé, une commande par retour d’état pour le suivi

d’une trajectoire de référence est choisie. Prenant en compte la disponibilité partielle
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des mesures du vecteur d’état, un observateur exponentiel non linéaire est introduit

dans la synthèse de la loi de commande. Ainsi, une commande par retour d’état basée

observateur est obtenue. Pour effectuer l’analyse de stabilité du système en boucle

fermée composée du procédé, de l’observateur et du contrôleur, le lemme de Barbalat

est alors utilisé conjointement avec les techniques déjà mentionnées pour la synthèse

d’observateurs. Enfin, deux différentes méthodes pour le calcul des paramètres du

contrôleur et de l’observateur sont proposées. Séparément, dans un premier temps.

Puis simultanément dans un second temps.

Mots-clés: Systèmes non linéaires, digestion anaérobie, observateur non linéaire, critère

H∞, commande non linéaire.
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