Modèles probabilistes d’ordonnancement partiel pour les systèmes distribués
Auteur / Autrice : | Jordi Martori Adrian |
Direction : | François Charoy, Pascal Urso |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 12/06/2017 |
Etablissement(s) : | Université de Lorraine |
Ecole(s) doctorale(s) : | École doctorale IAEM Lorraine - Informatique, Automatique, Électronique - Électrotechnique, Mathématiques de Lorraine (1992-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire lorrain de recherche en informatique et ses applications |
Jury : | Président / Présidente : Marine Minier |
Examinateurs / Examinatrices : Maria Potop-Butucaru, Weihai Yu, Hala Skaf | |
Rapporteurs / Rapporteuses : Maria Potop-Butucaru, Weihai Yu |
Mots clés
Résumé
Les systèmes distribués ont réussi à étendre la technologie de l’information à un public plus large, en termes d’emplacement et de nombre. Cependant, ces systèmes géo-répliqués doivent être évolutifs afin de répondre aux demandes toujours croissantes. De plus, le système doit pouvoir traiter les messages dans un ordre équivalent à celui de leur création afin d’éviter des effets indésirables. L’exécution suivant des ordres partiels fournit un ordonnancement d’événements que tous les nœuds suivront, ce qui permet donc le traitement des messages dans un ordre adéquat. Un système qui applique un ordre partiel simplifie le développement des applications distribuées et s’assure que l’utilisateur final n’observera pas des comportements défiant la causalité. Dans cette thèse, nous présentons des modèles statistiques pour différentes contraintes d’ordre partiel, en utilisant différentes distributions de modèles de latence. Étant donné un modèle de latence, qui donne le temps qu’il faut pour qu’un message passe d’un nœud à un autre, notre modèle s’appuie sur lui pour donner le temps supplémentaire qu’il faut pour appliquer un ordre partiel spécifique. Nous avons proposé les modèles suivants. Tout d’abord, dans une communication entre un et plusieurs nœuds, la probabilité que le message soit délivré dans tous les nœuds avant un temps donné. Deuxièmement, après la réception d’un message, la probabilité que tous les autres nœuds aient exécuté ce message avant temps donné. Troisièmement, dans une communication de un à plusieurs nœuds, la probabilité que le message soit arrivé à au moins un sous-ensemble d’entre eux avant un temps donné. Quatrièmement, l’ordre FIFO ou causal qui détermine si un message est prêt à être livré, dans un nœud ou plusieurs. Tout cela favorise la compréhension du comportement des systèmes distribués en présence d’ordres partiels. En outre, en utilisant cette connaissance, nous avons construit un algorithme qui utilise ces modèles de comportement du réseau pour établir un système de livraison causal fiable. Afin de valider nos modèles, nous avons développé un outil de simulation qui permet d’exécuter des scénarios adaptés à nos besoins. Nous pouvons définir les différents paramètres du modèle de latence, le nombre de clients et les charges de travail des clients. Cette simulation nous permet de comparer les valeurs générées de façon aléatoire pour chaque configuration spécifique avec les résultats prévus de notre modèle. Une des applications qui peuvent tirer profit de notre modèle, est un algorithme de livraison causale fiable. Il utilise l’information causale pour détecter les éléments manquants et réduit le besoin d’acquittement de message en contactant d’autres répliques seulement lorsque le message est supposé manquant. Cette information est fournie par notre modèle, qui définit les temporisateurs d’attente en fonction des statistiques du réseau et de la consommation des ressources. Enfin, cette application a été testée dans le même simulateur que les modèles, avec des résultats prometteurs, puis évaluée dans une expérience réelle utilisant Amazon EC2 comme plate-forme