Thèse soutenue

Étude de l'activité intrinsèque des catalyseurs Fischer-Tropsch à base de cobalt et de fer par des méthodes cinétiques transitoires

FR  |  
EN
Auteur / Autrice : Alexandre Antônio Bento Carvalho
Direction : Andrei KhodakovNilson Romeu MarcilioVitaly OrdomskyAndré Rodrigues Muniz
Type : Thèse de doctorat
Discipline(s) : Chimie organique, minérale, industrielle
Date : Soutenance le 23/11/2017
Etablissement(s) : Lille 1 en cotutelle avec Universidade Federal do Rio Grande do Sul (Porto Alegre, Brésil)
Ecole(s) doctorale(s) : École doctorale Sciences de la matière, du rayonnement et de l'environnement (Lille ; 1992-....)
Partenaire(s) de recherche : Laboratoire : UCCS - Unité de Catalyse et Chimie du Solide

Résumé

FR  |  
EN

Les travaux exposés dans ce manuscrit portent sur l’étude de l’activité intrinsèque et de la localisation des sites actifs des catalyseurs à base de cobalt et de fer par une combinaison des méthodes cinétiques transitoires telles que le SSITKA, de la caractérisation physico-chimique étendue et des tests catalytiques. La promotion des catalyseurs à base de fer avec des métaux utilisés pour la soudure (Bi et Pb) conduit à une augmentation remarquable de la vitesse de production des oléfines légères avec la possibilité d’effectuer la synthèse Fischer-Tropsch dans des conditions très douces (basse pression) voire pression atmosphérique. Parmi tous les catalyseurs étudiés, les catalyseurs à base de zéolite de type mordenite ont présenté la valeur la plus élevée de la constante de vitesse SSITKA. La localisation des sites actifs de cobalt dans les catalyseurs bifonctionnels à base de zéolite a un impact majeur sur la vitesse de réaction et en particulier sur la sélectivité en hydrocarbures. La proximité entre les sites actifs de cobalt et les sites actifs de Bronsted a été considérée comme un paramètre clef pour obtenir une sélectivité et un rendement plus élevés en hydrocarbures ramifiés. Le SSITKA couplé à des techniques de caractérisation a révélé que le dépôt de carbone et l'agglomération des nanoparticules de cobalt étaient responsables de la désactivation du catalyseur cobalt supporté par la silice. La régénération des catalyseurs sous hydrogène diminue le nombre d'espèces de carbone déposées et libère partiellement les sites les plus actifs d’adsorption dissociative et les sites les plus forts d'adsorption réversible du monoxyde de carbone.