Thèse soutenue

Optimisation de décisions économiques concurrentielles dans un simulateur de gestion d’entreprise

FR  |  
EN
Auteur / Autrice : Sylvain Dufourny
Direction : Clarisse Dhaenens
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 13/10/2017
Etablissement(s) : Lille 1
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur (Lille)
Partenaire(s) de recherche : Laboratoire : Centre de Recherche en Informatique, Signal et Automatique de Lille

Résumé

FR  |  
EN

Les technologies du numérique s’invitent de plus en plus dans l’enseignement. Les nouvelles pratiques pédagogiques révolutionnent également les standards de la formation. La « gamification » des cursus est, par exemple, devenue une tendance actuelle. Elle permet, par le jeu, d’exercer les apprenants différemment. Les simulations de gestion d’entreprise entrent dans ce cadre. Elles positionnent les stagiaires à la tête d’entreprises virtuelles et simulent un marché concurrentiel. Le déploiement de cette pratique se heurte néanmoins à des difficultés opérationnelles : taille du groupe, formation de l’animateur… C’est dans ce contexte que nous envisageons la mise en œuvre d’agents autonomes permettant d’accompagner ou de concurrencer les apprenants.Pour cela, nous proposons, tout d’abord, une modélisation performante d’une entreprise à base de programmes linéaires mixtes permettant l’optimisation des départements internes des entreprises (production, distribution, finance). Ensuite, nous introduisons une heuristique de recherche locale afin de générer des solutions performantes dans un environnement économique. Aussi, à la suite d’une phase d’extraction de connaissances, nous proposons la définition et la construction d’arbres d’anticipation qui permettent de prévoir les décisions concurrentielles des protagonistes engagés et ainsi de pouvoir estimer la qualité des solutions construites. Afin de valider les approches proposées, nous les avons comparées aux comportements réels de joueurs et avons évalué l’apport de l’exploitation de la connaissance. Enfin, nous avons proposé une généralisation de la méthode à d’autres simulateurs de gestion d’entreprise.