Thèse soutenue

Les applications qui commutent avec la transformation de Aluthge

FR  |  
EN
Auteur / Autrice : Fadil Chabbabi
Direction : Mostafa Mbekhta
Type : Thèse de doctorat
Discipline(s) : Mathématiques et leurs interactions
Date : Soutenance le 07/07/2017
Etablissement(s) : Lille 1
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur (Lille)
Partenaire(s) de recherche : Laboratoire : Laboratoire Paul Painlevé

Résumé

FR  |  
EN

Cette thèse se situe dans le cadre de l'analyse fonctionnelle et plus précisément dans le domaine de la théorie des opérateurs dans des espaces de Hilbert. Elle consiste à étudier les applications bijectives entre des algèbres d'opérateurs, qui commutent avec la transformation de Aluthge. Dans la première partie, nous allons étudier la transformation de Aluthge, qui joue un rôle important en théorie des opérateurs. Nous allons démontrer plusieurs résultats intéressants sur cette transformation. Ces résultats seront utilisés dans la suite de ce travail. Dans la deuxième partie, nous étudierons les bijections additives qui commutent avec la transformation de Aluthge. Nous donnerons également une forme complète des applications ω-additive qui commutent avec cette transformation. Ensuite, nous considérons les applications qui commutent avec la transformation de Aluthge sous le produit usuel et le produit de Jordan. Nous démontrerons que ces applications ont une forme simple. Dans la dernière partie, nous donnerons plusieurs expressions du rayon spectral via la transformation λ-Aluthge et ses itérées.