Thèse soutenue

Reconnaissance d’action humaines et d’interaction avec l’objet

FR  |  
EN
Auteur / Autrice : Meng Meng
Direction : Mohamed DaoudiHassen DriraJacques Boonaert
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 09/01/2017
Etablissement(s) : Lille 1
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur (Lille)
Partenaire(s) de recherche : Laboratoire : Centre de Recherche en Informatique, Signal et Automatique de Lille

Résumé

FR  |  
EN

Dans cette thèse, nous avons étudié la reconnaissance des actions qui incluent l'intéraction avec l’objet à partir des données du skeleton et des informations de profondeur fournies par les capteurs RGB-D. Il existe deux principales applications que nous abordons dans cette thèse: la reconnaissance de l'interaction humaine avec l'objet et la reconnaissance d'une activité anormale. Nous proposons, dan un premier temps, une modélisation spatio-temporelle pour la reconnaissance en ligne et hors ligne des interactions entre l’humain et l’objet. Ces caractéristiques ont été adoptées pour la reconnaissance en ligne des interactions humaines avec l’objet et pour la détection de la démarche anormale. Ensuite, nous proposons des caractéristiques liées à d'objet qui décrivent approximativement la forme et la taille de l’objet. Ces caractéristiques sont fusionnées avec les caractéristiques bas-niveau pour la reconnaissance en ligne des interactions humaines avec l’objet. Les expériences menées sur deux benchmarks démontrent l’efficacité de la méthode proposée. Dans le deuxième volet de ce travail, nous étendons l'étude à la détection de la démarche anormale en utilisant le cadre en ligne l’approche. Afin de valider la robustesse de l’approche à la pose, nous avons collecté une base multi-vue pour des interactions humaines avec l’objet, de façon normale et anormale. Les résultats expérimentaux sur le benchmark des actions anormales frontales et sur la nouvelles base prouvent l’efficacité de l’approche.