Génération de mouvement en robotique mobile et humanoïde
Auteur / Autrice : | Guilhem Saurel |
Direction : | Jean-Paul Laumond |
Type : | Thèse de doctorat |
Discipline(s) : | Robotique |
Date : | Soutenance le 03/10/2017 |
Etablissement(s) : | Toulouse, INSA |
Ecole(s) doctorale(s) : | École doctorale Systèmes (Toulouse ; 1999-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire d'Analyse et d'Architecture des Systèmes - Laboratoire d'analyse et d'architecture des systèmes [Toulouse] / LAAS |
Jury : | Président / Présidente : Philippe Soueres |
Examinateurs / Examinatrices : Jean-Paul Laumond, Brigitte D'andrea-Novel, Christine Chevallereau, Michel Taix, Guy Caverot | |
Rapporteur / Rapporteuse : Brigitte D'andrea-Novel, Christine Chevallereau |
Mots clés
Mots clés contrôlés
Résumé
La génération de mouvements de locomotion en robotique mobile est étudiée dans le monde académique depuis plusieurs décennies. La théorie concernant la modélisation et le contrôle des robots à roues est largement mature. Cependant, la mise en œuvre effective de ces modèles dans des conditions réelles demande des études complémentaires. Dans cette thèse, nous présentons trois projets mettant en œuvre trois différents types de robots mobiles. Nous débutons dans chaque cas par une analyse sur les qualités recherchées d’un mouvement dans un contexte particulier, qu’il soit artistique ou industriel, et terminons par la présentation des architectures algorithmiques et logicielles mises en œuvre, notamment dans le cadre d’expositions de plusieurs mois, où le public est invité à partager l’espace d’évolution de robots. La réalisation de ces projets montre que certains choix technologiques semblant insignifiants au moment de la conception des robots sont déterminants dans les dernières étapes de la production. On peut extrapoler cette remarque depuis ces robots mobile à deux ou trois degrés de liberté vers des robots humanoïdes pouvant en avoir plusieurs dizaines. La stratégie classique qui consiste à concevoir, dans un premier temps, l’architecture mécatronique des robots humanoïdes, pour se poser ensuite la question de leur contrôle, atteint ses limites, comme le montrent par exemple la consommation énergétique et la difficulté d’obtenir des mouvements de marche dynamique sur ces robots, pourtant conçus dans le but de marcher. Dans une perspective globale de conception des robots marcheurs, nous proposons un système de codesign, où il est possible d’optimiser simultanément la conception mécanique et les contrôleurs d’un robot..